首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a novel temperature-sensitive mutant of fission yeast alpha-tubulin Atb2 (atb2-983) that contains a single amino acid substitution (V260I). Atb2-983 is incorporated into the microtubules, and their overall structures are not altered noticeably, but microtubule dynamics is compromised during interphase. atb2-983 displays a high rate of chromosome missegregation and is synthetically lethal with deletions in a subset of spindle checkpoint genes including bub1, bub3, and mph1, but not with mad1, mad2, and mad3. During early mitosis in this mutant, Bub1, but not Mad2, remains for a prolonged period in the kinetochores that are situated in proximity to one of the two SPBs (spindle pole bodies). High dosage mal3(+), encoding EB1 homologue, rescues atb2-983, suggesting that Mal3 function is compromised. Consistently, Mal3 localization and binding between Mal3 and Atb2-983 are impaired significantly, and a mal3 single mutant, such as atb2-983, displays prolonged Bub1 kinetochore localization. Furthermore in atb2-983 back-and-forth centromere oscillation during prometaphase is abolished. Intriguingly, this oscillation still occurs in the mal3 mutant, indicating that there is another defect independent of Mal3. These results show that microtubule dynamics is important for coordinated execution of mitotic events, in which Mal3 plays a vital role.  相似文献   

2.
Mal3p and Tip1p are the fission yeast (Schizosaccharomyces pombe) homologues of EB1 and CLIP-170, two conserved microtubule plus end tracking proteins (+TIPs). These proteins are crucial regulators of microtubule dynamics. Using electron tomography, we carried out a high-resolution analysis of the phenotypes caused by mal3 and tip1 deletions. We describe the 3-dimensional microtubule organization, quantify microtubule end structures and uncover novel defects of the microtubule lattices. We also reveal unexpected structural modifications of the spindle pole bodies (SPBs), the yeast microtubule organizing centers. In both mutants we observe an increased SPB volume and a reduced number of MT/SPB attachments. The discovered defects alter previous interpretations of the mutant phenotypes and provide new insights into the molecular functions of the two protein families.  相似文献   

3.
Bipolar microtubule attachment is central to genome stability. Here, we investigate the mitotic role of the fission yeast EB1 homologue Mal3. Mal3 shows dynamic inward movement along the spindle, initial emergence at the spindle pole body (SPB) and translocation towards the equatorial plane, followed by sudden disappearance. Deletion of Mal3 results in early mitotic delay, which is dependent on the Bub1, but not the Mad2, spindle checkpoint. Consistently, Bub1, but not Mad2, shows prolonged kinetochore localization. Double mutants between mal3 and a subset of checkpoint mutants, including bub1, bub3, mad3 and mph1, but not mad1 or mad2, show massive chromosome mis-segregation defects. In mal3bub1 mutants, both sister centromeres tend to remain in close proximity to one of the separating SPBs. Further analysis indicates that mis-segregated centromeres are exclusively associated with the mother SPB. Mal3, therefore, has a role in preventing monopolar attachment in cooperation with the Bub1/Bub3/Mad3/Mph1-dependent checkpoint.  相似文献   

4.
The anchoring of microtubules to subcellular structures is critical for cell polarity and motility. Although the process of anchoring cytoplasmic microtubules to the centrosome has been studied in some detail, it is not known how spindle microtubules are anchored to the mitotic centrosome and, particularly, whether anchoring and nucleation of mitotic spindles are functionally separate. Here, we show that a fission yeast coiled-coil protein, Msd1, is required for anchoring the minus end of spindle microtubules to the centrosome equivalent, the spindle-pole body (SPB). msd1 deletion causes spindle microtubules to abnormally extend beyond SPBs, which results in chromosome missegregation. Importantly, this protruding spindle is phenocopied by the amino-terminal deletion mutant of Alp4, a component of the gamma-tubulin complex (gamma-TuC), which lacks the potential Msd1-interacting domain. We propose that Msd1 interacts with gamma-TuC, thereby specifically anchoring the minus end of microtubules to SPBs without affecting microtubule nucleation.  相似文献   

5.
Microtubule plus-end-interacting proteins (+TIPs) promote the dynamic interactions between the plus ends (+ends) of astral microtubules and cortical actin that are required for preanaphase spindle positioning. Paradoxically, +TIPs such as the EB1 orthologue Bim1 and Kar9 also associate with spindle pole bodies (SPBs), the centrosome equivalent in budding yeast. Here, we show that deletion of four C-terminal residues of the budding yeast gamma-tubulin Tub4 (tub4-delta dsyl) perturbs Bim1 and Kar9 localization to SPBs and Kar9-dependent spindle positioning. Surprisingly, we find Kar9 localizes to microtubule +ends in tub4-delta dsyl cells, but these microtubules fail to position the spindle when targeted to the bud. Using cofluorescence and coaffinity purification, we show Kar9 complexes in tub4-delta dsyl cells contain reduced levels of Bim1. Astral microtubule dynamics is suppressed in tub4-delta dsyl cells, but it are restored by deletion of Kar9. Moreover, Myo2- and F-actin-dependent dwelling of Kar9 in the bud is observed in tub4-delta dsyl cells, suggesting defective Kar9 complexes tether microtubule +ends to the cortex. Overproduction of Bim1, but not Kar9, restores Kar9-dependent spindle positioning in the tub4-delta dsyl mutant, reduces cortical dwelling, and promotes Bim1-Kar9 interactions. We propose that SPBs, via the tail of Tub4, promote the assembly of functional +TIP complexes before their deployment to microtubule +ends.  相似文献   

6.
A critical aspect of mitosis is the interaction of the kinetochore with spindle microtubules. Fission yeast Mal3 is a member of the EB1 family of microtubule plus-end binding proteins, which have been implicated in this process. However, the Mal3 interaction partner at the kinetochore had not been identified. Here, we show that the mal3 mutant phenotype can be suppressed by the presence of extra Spc7, an essential kinetochore protein associated with the central centromere region. Mal3 and Spc7 interact physically as both proteins can be coimmunoprecipitated. Overexpression of a Spc7 variant severely compromises kinetochore-microtubule interaction, indicating that the Spc7 protein plays a role in this process. Spc7 function seems to be conserved because, Spc105, a Saccharomyces cerevisiae homolog of Spc7, identified by mass spectrometry as a component of the conserved Ndc80 complex, can rescue mal3 mutant strains.  相似文献   

7.
Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a +TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure.  相似文献   

8.
Human gamma-tubulin functions in fission yeast   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1994,126(6):1465-1473
gamma-Tubulin is a phylogenetically conserved component of microtubule- organizing centers that is essential for viability and microtubule function. To examine the functional conservation of gamma-tubulin, we have tested the ability of human gamma-tubulin to function in the fission yeast Schizosaccharomyces pombe. We have found that expression of a human gamma-tubulin cDNA restores viability and a near-normal growth rate to cells of S. pombe lacking endogenous gamma-tubulin. Immunofluorescence microscopy showed that these cells contained normal mitotic spindles and interphase microtubule arrays, and that human gamma-tubulin, like S. pombe gamma-tubulin, localized to spindle pole bodies, the fungal microtubule-organizing centers. These results demonstrate that human gamma-tubulin functions in fission yeast, and they suggest that in spite of the great morphological differences between the microtubule-organizing centers of humans and fission yeasts, gamma-tubulin is likely to perform the same tasks in both. They suggest, moreover, that the proteins that interact with gamma-tubulin, including, most obviously, microtubule-organizing center proteins, must also be conserved. We have also found that a fivefold overexpression of S. pombe gamma-tubulin causes no reduction in growth rates or alteration of microtubule organization. We hypothesize that the excess gamma-tubulin is maintained in the cytoplasm in a form incapable of nucleating microtubule assembly. Finally, we have found that expression of human gamma-tubulin or overexpression of S. pombe gamma-tubulin causes no significant alteration of resistance to the antimicrotubule agents benomyl, thiabendazole and nocodazole.  相似文献   

9.
The p21-activated kinase, Shk1, is required for the proper establishment of cell polarity in the fission yeast, Schizosaccharomyces pombe. We showed recently that loss of the essential Shk1 inhibitor, Skb15, causes significant spindle defects in fission yeast, thus implicating Shk1 as a potential regulator of microtubule dynamics. Here, we show that cells deficient in Shk1 function have malformed interphase microtubules and mitotic microtubule spindles, are hypersensitive to the microtubule-destabilizing drug thiabendazole (TBZ) and cold sensitive for growth. TBZ treatment causes a downregulation of Shk1 kinase activity, which increases rapidly after release of cells from the drug, thus providing a correlation between Shk1 kinase function and active microtubule polymerization. Consistent with a role for Shk1 as a regulator of microtubule dynamics, green fluorescent protein (GFP)-Shk1 fusion proteins localize to interphase microtubules and mitotic microtubule spindles, as well as to cell ends and septum-forming regions of fission yeast cells. We show that loss of Tea1, a cell end- and microtubule-localized protein previously implicated as a regulator of microtubule dynamics in fission yeast, exacerbates the growth and microtubule defects resulting from partial loss of Shk1 and that Shk1 localizes to illicit growth tips produced by tea1 mutant cells. Our results demonstrate that Shk1 is required for the proper regulation of microtubule dynamics in fission yeast and implicate Tea1 as a potential Shk1 regulator.  相似文献   

10.
Int6/eIF3e is implicated in tumorigenesis, but its molecular functions remain unclear. We have studied its fission yeast homolog Yin6, reporting that it regulates proteolysis by controlling the assembly/localization of proteasomes, and binds directly to another conserved protein, Moe1. In the present study, we isolated Cdc48 as a Moe1-binding protein from a yeast two-hybrid screen, and confirmed biochemically that they form a stable complex in fission yeast. Overexpressing Moe1 or Yin6 partially rescued phenotypes of cdc48 mutants; conversely, overexpressing Cdc48 partially rescued phenotypes of moe1 or yin6 mutants. Mutants defective in both Cdc48 and the Yin6-Moe1 complex showed growth defects that were far more severe than either alone. These double mutants were severely deficient in endoplasmic reticulum associated degradation (ERAD), as they were hypersensitive to accumulation of misfolded proteins. In addition, their chromosomes showed frequent defects in spindle attachment and segregation — these mitotic defects correlated with Ase1 and Bir1/survivin mislocalization. These results suggest that Cdc48, Yin6, and Moe1 act in the same protein complex to concertedly control ERAD and chromosome segregation. Many of these properties are evolutionarily conserved in humans, since human Cdc48 rescued the lethality of the yeast cdc48? mutant, and Int6 and Moe1/eIF3d bind Cdc48 in human cells.  相似文献   

11.
Centrosomes are considered to be the major sites of microtubule nucleation in mitotic cells (reviewed in ), yet mitotic spindles can still form after laser ablation or disruption of centrosome function . Although kinetochores have been shown to nucleate microtubules, mechanisms for acentrosomal spindle formation remain unclear. Here, we performed live-cell microscopy of GFP-tubulin to examine spindle formation in Drosophila S2 cells after RNAi depletion of either gamma-tubulin, a microtubule nucleating protein, or centrosomin, a protein that recruits gamma-tubulin to the centrosome. In these RNAi-treated cells, we show that poorly focused bipolar spindles form through the self-organization of microtubules nucleated from chromosomes (a process involving gamma-tubulin), as well as from other potential sites, and through the incorporation of microtubules from the preceding interphase network. By tracking EB1-GFP (a microtubule-plus-end binding protein) in acentrosomal spindles, we also demonstrate that the spindle itself represents a source of new microtubule formation, as suggested by observations of numerous microtubule plus ends growing from acentrosomal poles toward the metaphase plate. We propose that the bipolar spindle propagates its own architecture by stimulating microtubule growth, thereby augmenting the well-described microtubule nucleation pathways that take place at centrosomes and chromosomes.  相似文献   

12.
Through a screen designed to isolate novel fission yeast genes required for chromosome segregation, we have identified mal3+. The mal3-1 mutation decreased the transmission fidelity of a nonessential minichromosome and altered sensitivity to microtubule-destabilizing drugs. Sequence analysis revealed that the 35-kD Mal3 is a member of an evolutionary conserved protein family. Its human counterpart EB-1 was identified in an interaction screen with the tumour suppressor protein APC. EB-1 was able to substitute for the complete loss of the mal3+ gene product suggesting that the two proteins might have similar functions. Cells containing a mal3 null allele were viable but showed a variety of phenotypes, including impaired control of cell shape. A fusion protein of Mal3 with the Aequorea victoria green fluorescent protein led to in vivo visualization of both cytoplasmic and mitotic microtubule structures indicating association of Mal3 with microtubules. The absence of Mal3 protein led to abnormally short, often faint cytoplasmic microtubules as seen by indirect antitubulin immunofluorescence. While loss of the mal3+ gene product had no gross effect on mitotic spindle morphology, overexpression of mal3+ compromised spindle formation and function and led to severe growth inhibition and abnormal cell morphology. We propose that Mal3 plays a role in regulating the integrity of microtubules possibly by influencing their stability.  相似文献   

13.
Two successive rounds of chromosome segregation following a single round of DNA replication enable the production of haploid gametes during meiosis. In the fission yeast Schizosaccharomyces pombe, karyogamy is the process where the nuclei from 2 haploid cells fuse to create a diploid nucleus, which then undergoes meiosis to produce 4 haploid spores. By screening a collection of S. pombe deletion strains, we found that the deletion of 2 genes, mal3 and mto1, leads to the production of asci containing up to 8 spores. Here, we show that Mal3, the fission yeast member of the EB1 family of conserved microtubule plus-end tracking proteins, is required for karyogamy, oscillatory nuclear movement, and proper segregation of chromosomes during meiosis. In the absence of Mal3, meiosis frequently initiates before the completion of karyogamy, thus producing up to 8 nuclei in a single ascus. Our results provide new evidence that fission yeast can initiate meiosis prior to completing karyogamy.  相似文献   

14.
15.
The budding yeast spindle aligns along the mother- bud axis through interactions between cytoplasmic microtubules (CMs) and the cell cortex. Kar9, in complex with the EB1-related protein Bim1, mediates contacts of CMs with the cortex of the daughter cell, the bud. Here we established a novel series of events that target Kar9 to the bud cortex. First, Kar9 binds to spindle pole bodies (SPBs) in G(1) of the cell cycle. Secondly, in G(1)/S the yeast Cdk1, Cdc28, associates with SPBs and phosphorylates Kar9. Thirdly, Kar9 and Cdc28 then move from the SPB to the plus end of CMs directed towards the bud. This movement is dependent upon the microtubule motor protein Kip2. Cdc28 activity is required to concentrate Kar9 at the plus end of CMs and hence to establish contacts with the bud cortex. The Cdc28-regulated localization of Kar9 is therefore an integral part of the program that aligns spindles.  相似文献   

16.
The yeast protein Stu2 belongs to the XMAP215 family of conserved microtubule-binding proteins which regulate microtubule plus end dynamics. XMAP215-related proteins also bind to centrosomes and spindle pole bodies (SPBs) through proteins like the mammalian transforming acidic coiled coil protein TACC or the yeast Spc72. We show that yeast Spc72 has two distinct domains involved in microtubule organization. The essential 100 N-terminal amino acids of Spc72 interact directly with the gamma-tubulin complex, and an adjacent non-essential domain of Spc72 mediates binding to Stu2. Through these domains, Spc72 brings Stu2 and the gamma-tubulin complex together into a single complex. Manipulation of Spc72-Stu2 interaction at SPBs compromises the anchorage of astral microtubules at the SPB and surprisingly also influences the dynamics of microtubule plus ends. Permanently tethering Stu2 to SPBs by fusing it to a version of Spc72 that lacks the Stu2-binding site in part complements these defects in a manner which is dependent upon the microtubule-binding domain of Stu2. Thus, the SPB-associated Spc72-Stu2 complex plays a key role in regulating microtubule properties.  相似文献   

17.
Sandblad L  Busch KE  Tittmann P  Gross H  Brunner D  Hoenger A 《Cell》2006,127(7):1415-1424
End binding 1 (EB1) proteins are highly conserved regulators of microtubule dynamics. Using electron microscopy (EM) and high-resolution surface shadowing we have studied the microtubule-binding properties of the fission yeast EB1 homolog Mal3p. This allowed for a direct visualization of Mal3p bound on the surface of microtubules. Mal3p particles usually formed a single line on each microtubule along just one of the multiple grooves that are formed by adjacent protofilaments. We provide structural data showing that the alignment of Mal3p molecules coincides with the microtubule lattice seam as well as data suggesting that Mal3p not only binds but also stabilizes this seam. Accordingly, Mal3p stabilizes microtubules through a specific interaction with what is potentially the weakest part of the microtubule in a way not previously demonstrated. Our findings further suggest that microtubules exhibit two distinct reaction platforms on their surface that can independently interact with target structures such as microtubule-associated proteins, motors, kinetochores, or membranes.  相似文献   

18.
Many organisms divide chromosomes within the confines of the nuclear envelope (NE) in a process known as closed mitosis. Thus, they must ensure coordination between segregation of the genetic material and division of the NE itself. Although many years of work have led to a reasonably clear understanding of mitotic spindle function in chromosome segregation, the NE division mechanism remains obscure. Here, we show that fission yeast cells overexpressing the transforming acid coiled coil (TACC)-related protein, Mia1p/Alp7p, failed to separate the spindle pole bodies (SPBs) at the onset of mitosis, but could assemble acentrosomal bipolar and antiparallel spindle structures. Most of these cells arrested in anaphase with fully extended spindles and nonsegregated chromosomes. Spindle poles that lacked the SPBs did not lead the division of the NE during spindle elongation, but deformed it, trapping the chromosomes within. When the SPBs were severed by laser microsurgery in wild-type cells, we observed analogous deformations of the NE by elongating spindle remnants, resulting in NE division failure. Analysis of dis1Δ cells that elongate spindles despite unattached kinetochores indicated that the SPBs were required for maintaining nuclear shape at anaphase onset. Strikingly, when the NE was disassembled by utilizing a temperature-sensitive allele of the Ran GEF, Pim1p, the abnormal spindles induced by Mia1p overexpression were capable of segregating sister chromatids to daughter cells, suggesting that the failure to divide the NE prevents chromosome partitioning. Our results imply that the SPBs preclude deformation of the NE during spindle elongation and thus serve as specialized structures enabling nuclear division during closed mitosis in fission yeast.  相似文献   

19.
gamma-Tubulin is a conserved essential protein required for assembly and function of the mitotic spindle in humans and yeast. For example, human gamma-tubulin can replace the gamma-tubulin gene in Schizosaccharomyces pombe. To understand the structural/functional domains of gamma-tubulin, we performed a systematic alanine-scanning mutagenesis of human gamma-tubulin (TUBG1) and studied phenotypes of each mutant allele in S. pombe. Our screen, both in the presence and absence of the endogenous S. pombe gamma-tubulin, resulted in 11 lethal mutations and 12 cold-sensitive mutations. Based on structural mapping onto a homology model of human gamma-tubulin generated by free energy minimization, all deleterious mutations are found in residues predicted to be located on the surface, some in positions to interact with alpha- and/or beta-tubulins in the microtubule lattice. As expected, one class of tubg1 mutations has either an abnormal assembly or loss of the mitotic spindle. Surprisingly, a subset of mutants with abnormal spindles does not arrest in M phase but proceeds through anaphase followed by abnormal cytokinesis. These studies reveal that in addition to its previously appreciated role in spindle microtubule nucleation, gamma-tubulin is involved in the coordination of postmetaphase events, anaphase, and cytokinesis.  相似文献   

20.
Cells of the fission yeast Schizosaccharomyces pombe normally reproduce by mitotic division in the haploid state. When subjected to nutrient starvation, two haploid cells fuse and undergo karyogamy, forming a diploid cell that initiates meiosis to form four haploid spores. Here, we show that deletion of the mal3 gene, which encodes a homolog of microtubule regulator EB1, produces aberrant asci carrying more than four spores. The mal3 deletion mutant cells have a disordered cytoplasmic microtubule structure during karyogamy and initiate meiosis before completion of karyogamy, resulting in twin haploid meiosis in the zygote. Treatment with anti-microtubule drugs mimics this phenotype. Mutants defective in karyogamy or mutants prone to initiate haploid meiosis exaggerate the phenotype of the mal3 deletion mutant. Our results indicate that proper microtubule structure is required for ordered progression through the meiotic cycle. Furthermore, the results of our study suggest that fission yeast do not monitor ploidy during meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号