首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of purine derivatives into vacuoles isolated from Saccharomyces cerevisiae was studied. Vacuoles which conserved their ability to take up purine compounds were prepared by a modification of the method of polybase-induced lysis of spheroplasts. Guanosine greater than inosine = hypoxanthine greater than adenosine were taken up with decreasing initial velocities, respectively; adenine was not transported. Guanosine and adenosine transporting systems were saturable, with apparent Km values 0.63 mM and 0.15 mM respectively, while uptake rates of inosine and of hypoxanthine were linear functions of their concentrations. Adenosine transport in vacuoles appeared strongly dependent on the growth phase of the cell culture. The system transporting adenosine was further characterized by its pH dependency optimum of 7.1 and its sensitivity to inhibition by S-adenosyl-L-methionine. In the absence of adenosine in the external medium, [14C]adenosine did not flow out from preloaded vacuoles. However, in the presence of external adenosine, a very rapid efflux of radioactivity was observed, indicating an exchange mechanism for the observed adenosine transport in the vacuoles. In isolated vacuoles the only purine derivative accumulated was found to be S-adenosyl-L-homocysteine.  相似文献   

2.
Spheroplasts from Saccharomyces cerevisiae NCYC 366, enriched in phosphatidylethanolamine after growth in medium supplemented with 1 mM ethanolamine, were more resistant to osmotic lysis than were spheroplasts from cells grown in the presence of 1 mM choline and enriched in phosphatidylcholine.  相似文献   

3.
We reconstituted a protein translocation-transport system composed of permeabilized spheroplasts (P-cells) of the fission yeast Schizosaccharomyces pombe and the precursor of alpha sex pheromone, prepro-alpha-factor of the budding yeast Saccharomyces cerevisiae. We found that P-cells prepared from the spheroplasts formed in 0.7M KCl as an osmotic stabilizer had the activity to transport pro-alpha-factor to the Golgi apparatus. Electron microscopic observations showed that membranes were preserved more intact in the P-cells prepared from the spheroplasts formed in 0.7M KCl than in 0.7M sorbitol. A glycoprotein of S. pombe contains galactose residues, and we detected incorporation of radiolabeled galactose residues into the anti-prepro-alpha-factor immunoprecipitable fractions in this S. pombe system, but not in the S. cerevisiae system. This paper reports that a heterologous system of in vitro protein transport was performed, and prepro-alpha-factor has the signals necessary for early steps of the transport in S. pombe.  相似文献   

4.
1. The properties of S-adenosyl-L-methionine accumulating system for both vacuoles and spheroplasts are described. Yeast vacuoles were obtained by a modified metabolic lysis procedure from spheroplasts of Saccharomyces cerevisiae. 2. Isolated vacuoles accumulate S-adenosyl-L-methionine by means of a highly specific transport system as indicated by competition experiments with structural analogs of S-adenosyl-L-methionine. The S-adenosyl-L-methionine transport system shows saturation kinetics with an apparent Km of 68 muM in vacuoles and 11 muM in spheroplasts. 3. S-Adenosyl-L-methionine accumulation into vacuoles does not require glucose, phosphoenolpyruvic acid, ATP, ADP nor any other tri- or di-phosphorylated nucleotides. It is insensitive to azide and 2,4-dinitrophenol which strongly inhibit the glucose-dependent accumulation of S-adenosyl-L-methionine in spheroplasts. 4. The transport of S-adenosyl-L-methionine into vacuoles is optimal at pH 7.4 and is insensitive to nystatin while the uptake of S-adenosyl-L-methionine into spheroplasts is optimal at pH 5.0 and is strongly sensitive to nystatin. On this basis it has thus been possible to measure both the intracytoplasmic and the intravacuolar pool of S-adenosyl-L-methionine. 5. Our results indicate the existence of a highly specific S-adenosyl-L-methionine transport system in the vacuolar membrane which is clearly different from the one present in the plasma membrane of yeast cells.  相似文献   

5.
For some bacteria and algae, it has been proposed that inorganic polyphosphates and transport of metal-phosphate complexes could participate in heavy metal tolerance. To test for this possibility in Acidithiobacillus ferrooxidans, a microorganism with a high level of resistance to heavy metals, the polyphosphate levels were determined when the bacterium was grown in or shifted to the presence of a high copper concentration (100 mM). Under these conditions, cells showed a rapid decrease in polyphosphate levels with a concomitant increase in exopolyphosphatase activity and a stimulation of phosphate efflux. Copper in the range of 1 to 2 microM greatly stimulated exopolyphosphatase activity in cell extracts from A. ferrooxidans. The same was seen to a lesser extent with cadmium and zinc. Bioinformatic analysis of the available A. ferrooxidans ATCC 23270 genomic sequence did not show a putative pit gene for phosphate efflux but rather an open reading frame similar in primary and secondary structure to that of the Saccharomyces cerevisiae phosphate transporter that is functional at acidic pH (Pho84). Our results support a model for metal detoxification in which heavy metals stimulate polyphosphate hydrolysis and the metal-phosphate complexes formed are transported out of the cell as part of a possibly functional heavy metal tolerance mechanism in A. ferrooxidans.  相似文献   

6.
Fermentation of alpha-glucosides (maltose, maltotriose) by Saccharomyces cerevisiae cells is a critical phase in the processes of brewing and breadmaking. Utilization of alpha-glucosides requires the active transport of the sugar across the cell membrane and, subsequently, its hydrolysis by cytoplasmic glucosidases. Although transport activities are usually assayed using radiolabeled substrates, we have developed a simple, cheap and reliable colorimetric assay for the determination of alpha-glucoside uptake using p-nitrophenyl-alpha-D-glucopyranoside (pNPalphaG) as substrate. Our results show that pNPalphaG is actively transported by S. cerevisiae cells by a H+-symport mechanism, which depends on the electrochemical proton gradient across the plasma membrane. pNPalphaG uptake is mediated by the AGT1 alpha-glucoside permease, which has a high affinity (Km=3 mM) for this chromogenic substrate. This simple colorimetric uptake assay can be used to analyze the expression and regulation of the AGT1 permease in S. cerevisiae cells.  相似文献   

7.
Glucose transport in a kinaseless Saccharomyces cerevisiae mutant.   总被引:15,自引:8,他引:7       下载免费PDF全文
Wild-type Saccharomyces cerevisiae organisms contain three kinases which catalyze the phosphorylation of glucose: two hexokinase isozymes (PI and PII) and one glucokinase. Glucose transport measurements for triple-kinaseless mutants, which lack all three of these kinases, confirm that the kinases are involved in the low apparent Km transport process observed in metabolizing cells. Thus kinase-positive cells containing one or more of the three kinases exhibit biphasic transport kinetics with a low apparent Km (1 to 2 mM) and high apparent Km (40 to 50 mM) component. Triple-kinaseless cells, however, exhibit only the high apparent Km component of kinase-positive cells (60 mM). Kinetic analysis of glucose transport in the triple-kinaseless cells shows that glucose is transported by a facilitated diffusion process which exhibits trans-stimulated equilibrium exchange and influx counterflow.  相似文献   

8.
Isolated mitochondria of Saccharomyces cerevisiae cells grown on glucose possess acid-soluble inorganic polyphosphate (polyP). Its level strongly depends on phosphate (P(i)) concentration in the culture medium. The polyP level in mitochondria showed 11-fold decrease under 0.8 mM P(i) as compared with 19.3 mM P(i). When spheroplasts isolated from P(i)-starved cells were incubated in the P(i)-complete medium, they accumulated polyP and exhibited a phosphate overplus effect. Under phosphate overplus the polyP level in mitochondria was two times higher than in the complete medium without preliminary P(i) starvation. The average chain length of polyP in mitochondria was of <15 phosphate residues at 19.3 mM P(i) in the culture medium and increased at phosphate overplus. Deoxyglucose inhibited polyP accumulation in spheroplasts, but had no effect on polyP accumulation in mitochondria. Uncouplers (FCCP, dinitrophenol) and ionophores (monensin, nigericin) inhibited polyP accumulation in mitochondria more efficiently than in spheroplasts. Fast hydrolysis of polyP was observed after sonication of isolated mitochondria. Probably, the accumulation of polyP in mitochondria depended on the proton-motive force of their membranes.  相似文献   

9.
Dual system for potassium transport in Saccharomyces cerevisiae.   总被引:17,自引:2,他引:15       下载免费PDF全文
In a newly formulated growth medium lacking Na+ and NH4+, Saccharomyces cerevisiae grew maximally at 5 microM K+. Cells grown under these conditions transported K+ with an apparent Km of 24 microM, whereas cells grown in customary high-K+ medium had a significantly higher Km (2 mM K+). The two types of transport also differed in carbonyl cyanide-m-chlorophenyl hydrazone sensitivity, response to ATP depletion, and temperature dependence. The results can be accounted for either by two transport systems or by one system operating in two different ways.  相似文献   

10.
Transformation of yeast spheroplasts without cell fusion   总被引:72,自引:0,他引:72  
The efficiency of genetic transformation of Saccharomyces cerevisiae spheroplasts has been increased 10- to 100-fold over previously published procedures. Optimal transformation frequencies for single-stranded and double-stranded replicating plasmids are 2 X 10(7) and 5 X 10(6) transformants/microgram, respectively. At saturating DNA concentrations, 12 and 3%, respectively, of the viable spheroplasts contain plasmid DNA. The percentage of transformants that have undergone nuclear fusion varies from 0.1 to 3%, indicating that fusion is not required for the uptake of DNA by yeast spheroplasts.  相似文献   

11.
Zero trans-influx assays of glucose and xylose were performed using Saccharomyces cerevisiae to investigate transport characteristics under high and low glucose conditions. Under high glucose conditions, most glucose was transported by the low-affinity transporter. The high-affinity transporter was expressed under low glucose conditions, transporting over 50% glucose. Inhibition kinetics revealed that xylose was transported by both high- and low-affinity glucose transporters. Affinities of both glucose transporters for xylose were very low under high glucose condition but increased to a similar level to glucose under low glucose condition. The maximum rate of xylose transport increased by 85%, while an overall maximum glucose transport rate decreased by 42% under low glucose condition, indicating the presence of other transport system for sugars except for glucose. It was suggested that expression of the high-affinity transporter and increased affinity of glucose transporters for xylose under low glucose condition would provide a fermentation strategy for enhancing the productivity of xylitol by recombinant S. cerevisiae harboring the xylose reductase gene.  相似文献   

12.
To determine whether solute transport across yeast membranes was facilitated, we measured the water and solute permeations of vacuole-derived and late secretory vesicles in Saccharomyces cerevisiae; all permeations were consistent with passive diffusive flow. We also overexpressed Fps1p, the putative glycerol facilitator in S. cerevisiae, in secretory vesicles but observed no effect on water, glycerol, formamide, or urea permeations. However, spheroplasts prepared from the strain overexpressing Fps1p showed enhanced glycerol uptake, suggesting that Fps1p becomes active only upon insertion in the plasma membrane.  相似文献   

13.
Diphtheria toxin kills spheroplasts of Saccharomyces cerevisiae but not the intact yeast cells. After 2 h of exposure to ca. 10(-7) M toxin, less than 1% of spheroplasts were able to regenerate into intact cells. The same high levels of toxin inhibited the rate of protein synthesis by more than 90% within 1 h, whereas RNA and DNA synthesis were not inhibited until 4 h or exposure. Both killing and protein synthesis inhibition were dependent on toxin concentration. The nature of the toxin-cell interaction was also studied by using fragments of intact toxin and mutant toxin proteins. Neither toxin fragment A nor CRM45 nor CRM197 affected spheroplasts, but CRM197 and ATP prevented the inhibitory action of intact toxin. These results suggest that toxin acts on S. cerevisiae spheroplasts in much the same manner as it acts on sensitive mammalian cells.  相似文献   

14.
Macromolecule synthesis in yeast spheroplasts   总被引:27,自引:16,他引:11  
Conditions have been established for the preparation of spheroplasts of Saccharomyces cerevisiae which are able to increase their net content of protein, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA), several-fold upon incubation in a medium stabilized with 1 m sorbitol. The rate of RNA and protein synthesis in the spheroplasts is nearly the same as that occurring in whole cells incubated under the same conditions; DNA synthesis occurs at about half the whole cell rate. The spheroplasts synthesize transfer RNA and ribosomal RNA. The newly synthesized ribosomal RNA is incorporated into ribosomes and polysomes. The polysomes are the site of protein synthesis in these spheroplasts. Greater than 90% of the total RNA can be solubilized by treatment of the spheroplasts with sodium dodecyl sulfate or sodium deoxycholate. These spheroplast preparations appear to be a useful subject for the study of RNA metabolism in yeast.  相似文献   

15.
The product of the UGA4 gene in Saccharomyces cerevisiae, which catalyzes the transport of 4-aminobutyric acid (GABA), also catalyzed the transport of putrescine. The Km values for GABA and putrescine were 0.11 and 0.69 mM, respectively. The UGA4 protein was located on the vacuolar membrane as determined by the effects of bafilomycin A1 and by indirect immunofluorescence microscopy. Uptake of both GABA and putrescine was inhibited by spermidine and spermine, although these polyamines are not substrates of UGA4. The UGA4 mRNA was induced by exposure to GABA, but not putrescine over 12h. The growth of an ornithine decarboxylase-deficient strain was enhanced by putrescine, and both putrescine and spermidine contents increased, when the cells were expressing UGA4. The results suggest that a substantial conversion of putrescine to spermidine occurs in the cytoplasm even though UGA4 transporter exists on vacuolar membranes.  相似文献   

16.
In Saccharomyces cerevisiae four transporters, Tpo1p-Tpo4p, all members of the major facilitator superfamily, have been shown to confer resistance to polyamines. It was suggested that they act by pumping their respective substrate into the lumen of the vacuole depending on the proton gradient generated by the V-ATPase. Using sucrose gradient ultracentrifugation we found that an hemagglutinin (HA)-tagged Tpo1p as well as its HA-tagged Tpo2p-4p homologues co-localize with plasma membrane markers. Because the HA-tagged Tpo1p carrier protein proved to be functional in conferring resistance to polyamines in TPO1 knockouts, a function of Tpo1p in transport of polyamines across the plasma membrane seemed to be likely. The polyamine transport activity of wild type cells was compared with the respective activity of a TPO1 knockout strain. The results obtained strongly suggest that Tpo1p is a plasma membrane-bound exporter, involved in the detoxification of excess spermidine in yeast. When studying polyamine transport of wild type cells, we furthermore found that S. cerevisiae is excreting putrescine during the fermentative growth phase.  相似文献   

17.
The determination of glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6) activity is usually accomplished by monitoring the decrease of absorbance at 240 nm due to the hydrolysis of S-d-lactoylglutathione. However, it was not possible, using this assay, to detect any enzyme activity in situ, in Saccharomyces cerevisiae permeabilized cells. Glyoxalase II activity was then determined by following the formation of GSH at 412 nm using 5,5'-dithiobis(2-nitrobenzoic acid). Using this method we characterized the kinetics of glyoxalase II in situ using S-d-lactoylglutathione as substrate and compared the results with those obtained for cell-free extracts. The specific activity was found to be (4.08 +/- 0.12) x 10(-2) micromol min-1 mg-1 in permeabilized cells and (3.90 +/- 0.04) x 10(-2) micromol min1 mg-1 in cell-free extracts. Kinetic parameters were Km 0.36 +/- 0.09 mM and V (7.65 +/- 0.59) x 10(-4) mM min-1 for permeabilized cells and Km 0.15 +/- 0.10 mM and V (7.23 +/- 1.04) x 10(-4) mM min-1 for cell-free extracts. d-Lactate concentration was also determined and increased in a linear way with permeabilized cell concentration. gamma-Glutamyl transferase (EC 2.3.2.2), which also accepts S-d-lactoylglutathione as substrate and hence could interfere with glyoxalase II assays, was found to be absent in Saccharomyces cerevisiae permeabilized cells.  相似文献   

18.
Oligopeptides and dipeptides are transported into Saccharomyces cerevisiae by a carrier-mediated system. In the dark, leucyl-p-nitroanilide (Leu-p-NA) and leucyl-leucyl-4-azido-2-nitrophenylalanine [Leu-Leu-Phe-(4N3,2NO2)] are competitive inhibitors of peptide transport by S. cerevisiae cells. The photolysis of yeast cells in the presence of Leu-p-NA or Leu-Leu-Phe(4N3,2NO2) at 350 nm results in an irreversible inactivation of peptide transport. Protection against this inactivation is afforded by an excess of trimethionine, a transported peptide. Photolysis with Leu-p-NA or Leu-Leu-Phe(4N3,2NO2) does not affect amino acid or sugar transport, and cell viability is maintained throughout the irradiation procedure. A 5-min irradiation of S. cerevisiae with 2.4 microM Leu-p-NA or 15 microM Leu-Leu-Phe(4N3,2NO2) causes 50% inhibition of trimethionine uptake. p-Nitroaniline, a possible hydrolysis product generated from Leu-p-NA by cellular peptidase activity, has no effect on peptide transport. An exogenous energy source is not required for photoinactivation. The results suggest that a component(s) of the peptide transport system of S. cerevisiae is irreversibly modified by photolysis with Leu-p-NA or Leu-Leu-Phe-(4N3,2NO2) and provide the first example of the use of amino acid p-nitroanilides as photoaffinity labels.  相似文献   

19.
The transport of L-arginine was studied in isolated vacuoles of Saccharomyces cerevisiae. A centrifugation method allowed rapid separation of the fragile vacuoles from the incubation media so that initial uptake rates of [14C]arginine could be measured. Labelled arginine added to the medium was accumulated in the isolated vacuoles; it was found to exchange specifically with the arginine already present in the vacuoles. Such an exchange did not take place in intact spheroplasts. The pH dependence of the arginine transport in the vacuoles was tested. As the vacuoles are unstable in the pH range of optimal transport activity (pH above 7.0), the pH optimum of the transport reaction could not be determined. From the temperature dependence, the apparent energy of activation was calculated to be 9800 cal/mol. Arginine transport shows saturation kinetics with an apparent Km of 30 muM in the isolated vacuoles, and of 1.5 muM in the spheroplasts. Competition experiments with amino acids and arginine analogues demonstrated that the arginine transport in both vacuoles and spheroplasts, is highly specific. The two systems, however, were shown to have distinct specificities. The inhibition of vacuolar L-arginine transport by D-arginine, L-histidine, and L-canavanine was competitive with apparent Ki values of 60 muM, 400 muM and 600 muM respectively.  相似文献   

20.
Kre1p, the plasma membrane receptor for the yeast K1 viral toxin   总被引:6,自引:0,他引:6  
Breinig F  Tipper DJ  Schmitt MJ 《Cell》2002,108(3):395-405
Saccharomyces cerevisiae K1 killer strains are infected by the M1 double-stranded RNA virus encoding a secreted protein toxin that kills sensitive cells by disrupting cytoplasmic membrane function. Toxin binding to spheroplasts is mediated by Kre1p, a cell wall protein initially attached to the plasma membrane by its C-terminal GPI anchor. Kre1p binds toxin directly. Both cells and spheroplasts of Deltakre1 mutants are completely toxin resistant; binding to cell walls and spheroplasts is reduced to 10% and < 0.5%, respectively. Expression of K28-Kre1p, an inactive C-terminal fragment of Kre1p retaining its toxin affinity and membrane anchor, fully restored toxin binding and sensitivity to spheroplasts, while intact cells remained resistant. Kre1p is apparently the toxin membrane receptor required for subsequent lethal ion channel formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号