首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular disc-like lamellar structure (DLS) earlier detected in the motility apparatus of Halobacterum salinarum and details of insertion of proximal ends of flagella into DLS were studied using electron microscopy. Analysis of ultrathin sections obtained after fixation with potassium permanganate established that DLS, absent in bacteria, contains a membrane-like structure. Electron microscopic studies of cell ghosts obtained by mild cytolysis in low-NaCl solutions shed additional light as on details of DLS structure and so on localization of flagellar proximal ends. Structural organization of the motility apparatus of bacteria and archaebacteria as representatives of two distinct taxonomic domains is discussed.  相似文献   

2.
Our ability to genetically manipulate living organisms is usually constrained by the efficiency of the genetic tools available for the system of interest. In this report, we present the design, construction and characterization of a set of four new modular vectors, the pHsal series, for engineering Halobacterium salinarum, a model halophilic archaeon widely used in systems biology studies. The pHsal shuttle vectors are organized in four modules: (i) the E. coli’s specific part, containing a ColE1 origin of replication and an ampicillin resistance marker, (ii) the resistance marker and (iii) the replication origin, which are specific to H. salinarum and (iv) the cargo, which will carry a sequence of interest cloned in a multiple cloning site, flanked by universal M13 primers. Each module was constructed using only minimal functional elements that were sequence edited to eliminate redundant restriction sites useful for cloning. This optimization process allowed the construction of vectors with reduced sizes compared to currently available platforms and expanded multiple cloning sites. Additionally, the strong constitutive promoter of the fer2 gene was sequence optimized and incorporated into the platform to allow high-level expression of heterologous genes in H. salinarum. The system also includes a new minimal suicide vector for the generation of knockouts and/or the incorporation of chromosomal tags, as well as a vector for promoter probing using a GFP gene as reporter. This new set of optimized vectors should strongly facilitate the engineering of H. salinarum and similar strategies could be implemented for other archaea.  相似文献   

3.
Phosphate is an essential component of all cells that must be taken up from the environment. Prokaryotes commonly secrete alkaline phosphatases (APs) to recruit phosphate from organic compounds by hydrolysis. In this study, the AP from Halobacterium salinarum, an archaeon that lives in a saturated salt environment, has been functionally and structurally characterized. The core fold and the active-site architecture of the H. salinarum enzyme are similar to other AP structures. These generally form dimers composed of dominant β-sheet structures sandwiched by α-helices and have well-accessible active sites. The surface of the enzyme is predicted to be highly negatively charged, like other proteins of extreme halophiles. In addition to the conserved core, most APs contain a crown domain that strongly varies within species. In the H. salinarum AP, the crown domain is made of an acyl-carrier-protein-like fold. Different from other APs, it is not involved in dimer formation. We compare the archaeal AP with its bacterial and eukaryotic counterparts, and we focus on the role of crown domains in enhancing protein stability, regulating enzyme function, and guiding phosphoesters into the active-site funnel.  相似文献   

4.
Many members of the Halobacteriaceae were found to produce halocins, molecules that inhibit the growth of other halophilic archaea. Halocin H4 that is produced by Haloferax mediterranei and inhibits the growth of Halobacterium salinarum is one of the best studied halocins to date. The gene encoding this halocin had been previously identified as halH4, located on one of Hfx. mediterranei megaplasmids. We generated a mutant of the halH4 gene and examined the killing ability of the Haloferax mediterranei halH4 mutant with respect to both Halobacterium salinarum and Haloferax volcanii. We showed that both wild-type Hfx. mediterranei and the halH4 mutant strain efficiently inhibited the growth of both species, indicating halocin redundancy. Surprisingly, the halH4 deletion mutant exhibited faster growth in standard medium than the wild type, and is likely to have a better response to several nucleotides, which could explain this phenotype.  相似文献   

5.
Ionizing radiation (IR) is of particular interest in biology because its exposure results in severe oxidative stress to the cell’s macromolecules. Our recent work with extremophiles supports the idea that IR resistance is most likely achieved by a metabolic route, effected by manganese (Mn) antioxidants. Biochemical analysis of “super-IR resistant” mutants of H. salinarum, evolved over multiple cycles of exposure to high doses of IR, confirmed the key role for Mn antioxidants in the IR resistance of this organism. Analysis of the proteome of H. salinarum “super-IR resistant” mutants revealed increased expression for proteins involved in energy metabolism, replenishing the cell with reducing equivalents depleted by the oxidative stress inflicted by IR. Maintenance of redox homeostasis was also activated by the over-expression of coenzyme biosynthesis pathways involved in redox reactions. We propose that in H. salinarum, increased tolerance to IR is a combination of metabolic regulatory adjustments and the accumulation of Mn-antioxidant complexes.  相似文献   

6.

Background

The genome of the halophilic archaeon Halobacterium salinarum NRC-1 encodes for homologs of MutS and MutL, which are key proteins of a DNA mismatch repair pathway conserved in Bacteria and Eukarya. Mismatch repair is essential for retaining the fidelity of genetic information and defects in this pathway result in the deleterious accumulation of mutations and in hereditary diseases in humans.

Methodology/Principal Findings

We calculated the spontaneous genomic mutation rate of H. salinarum NRC-1 using fluctuation tests targeting genes of the uracil monophosphate biosynthesis pathway. We found that H. salinarum NRC-1 has a low incidence of mutation suggesting the presence of active mechanisms to control spontaneous mutations during replication. The spectrum of mutational changes found in H. salinarum NRC-1, and in other archaea, appears to be unique to this domain of life and might be a consequence of their adaption to extreme environmental conditions. In-frame targeted gene deletions of H. salinarum NRC-1 mismatch repair genes and phenotypic characterization of the mutants demonstrated that the mutS and mutL genes are not required for maintenance of the observed mutation rate.

Conclusions/Significance

We established that H. salinarum NRC-1 mutS and mutL genes are redundant to an alternative system that limits spontaneous mutation in this organism. This finding leads to the puzzling question of what mechanism is responsible for maintenance of the low genomic mutation rates observed in the Archaea, which for the most part do not have MutS and MutL homologs.  相似文献   

7.
8.
9.
We investigated the applicability of the green fluorescent protein (GFP) of Aequorea victoria as a reporter for gene expression in an extremely halophilic organism: Halobacterium salinarum. Two recombinant GFPs were fused with bacteriorhodopsin, a typical membrane protein of H. salinarum. These fusion proteins preserved the intrinsic functions of each component, bacteriorhodopsin and GFP, were expressed in H. salinarum under conditions with an extremely high salt concentration, and were proved to be properly localized in its plasma membrane. These results suggest that GFP could be used as a versatile reporter of gene expression in H. salinarum for investigations of various halophilic membrane proteins, such as sensory rhodopsin or phoborhodopsin.  相似文献   

10.
The novel ciliate Platynematum salinarum (Scuticociliatia) was isolated only recently from a thalassohaline solar saltern pond (12%) in Portugal. Scanning electron microscopy showed numerous bacterial-shaped cells covering the complete surface of the ciliate. The rod-shaped epibionts were identified and characterized following the “Full-Cycle rRNA Approach”. The almost full-length 16S rRNA gene sequence was obtained using archaeal-specific primers and two species-specific probes were designed for fluorescence in situ hybridization. The 16S rRNA gene sequence of the epibiotic cells showed 87% sequence identity with the type strain sequence of the closest characterized species Halolamina pelagica. Phylogenetic reconstructions affiliated the novel organism to the genus Halolamina (Halobacteria, Archaea). Attempts to isolate the epibionts failed and, therefore, growth experiments incorporating the antibiotic anisomycin were conducted in order to investigate the potential symbiotic relationship between P. salinarum and the epibionts. The results suggested an obligate symbiosis between the two organisms and revealed the first symbiotic representative of the Halobacteria. Based on the phylogenetic analyses and growth experiments we propose the classification of this novel organism in a new genus, with the taxon name “Candidatus Haloectosymbiotes riaformosensis”.  相似文献   

11.
A new species of halophilic photosynthetic bacteria, Rhodospirillum salinarum, has been isolated and described. Its natural habitat are the terminal crystallization ponds of solar salt production plants. R. salinarum grows optimally at 42°C in the presence of 6–18% NaCl (w/v). Growth requirements are complex, yeast extract and peptone being required both for aerobic heterotrophic and for anaerobic phototrophic growth. Increasing concentrations of NaCl in the growth media did not give rise to any corresponding increase in intracellular concentrations of K+, Na+, polyalcohols or amino acids. Malate dehydrogenase from R. salinarum is not halophilic, being inhibited even at low concentrations of Na+ or K+. The GC mol % of DNA from R. salinarum is markedly higher than that for DNA from R. salexigens, the only previously described halophilic species of the genus Rhodospirillum.  相似文献   

12.
13.
Platynematum salinarum nov. spec. was discovered in a hypersaline (∼120‰) solar saltern in Portugal. Its morphology, ontogenesis, and 18S rRNA were studied with routine methods. Platynematum salinarum has a size of about 35 μm × 18 μm and differs from other platynematids (= Platynematum and Pseudoplatynematum) in having an only slightly flattened body without any spines or notches. Both, the oral and somatic infraciliature resemble other platynematids and the tetrahymenid pattern in general. The ontogenesis is scuticobuccokinetal, being unique in generating protomembranelle 1 from kinetids produced by the paroral membrane of the proter and of the scutica. This composite divides transversely: the right half becomes the paroral membrane of the opisthe, the left half transforms to opisthe's adoral membranelle 1. The scutica and the molecular sequence classify P. salinarum into the order Scuticociliatida, family Cinetochilidae. The 18S rRNA sequence shows 92.7% similarity to the closest relative deposited in public databases (the scuticociliate Sathrophilus holtae), and our study provides the first sequence for the genus Platynematum. Experiments at different salinities show growth between 120‰ and 300‰, survival at 100‰, and cell death around 60‰ salinity, characterizing P. salinarum as a true halophile.  相似文献   

14.
Archaea, constituting a third domain of life between Eubacteria and Eukarya, characteristically inhabit extreme environments. They swim by rotating flagellar filaments that are phenomenologically and functionally similar to those of eubacteria. However, biochemical, genetic and structural evidence has pointed to significant differences but even greater similarity to eubacterial type IV pili. Here we determined the three-dimensional symmetry and structure of the flagellar filament of the acidothermophilic archaeabacterium Sulfolobus shibatae B12 using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). Processing of the cryo-negatively stained filaments included analysis of their helical symmetry and subsequent single particle reconstruction. Two filament subunit packing arrangements were identified: one has helical symmetry, similar to that of the extreme halophile Halobacterium salinarum, with ten subunits per 5.3 nm repeat and the other has helically arranged stacked disks with C3 symmetry and 12 subunits per repeat. The two structures are related by a slight twist. The S. shibatae filament has a larger diameter compared to that of H. salinarum, at the opposite end of the archaeabacterial phylogenetic spectrum, but the basic three-start symmetry and the size and arrangement of the core domain are conserved and the filament lacks a central channel. This similarity suggests a unique and common underlying symmetry for archaeabacterial flagellar filaments.  相似文献   

15.
Glycocardiolipin is an archaeal analogue of mitochondrial cardiolipin, having an extraordinary affinity for bacteriorhodopsin, the photoactivated proton pump in the purple membrane of Halobacterium salinarum. Here purple membranes have been isolated by osmotic shock from either cells or envelopes of Hbt. salinarum. We show that purple membranes isolated from envelopes have a lower content of glycocardiolipin than standard purple membranes isolated from cells. The properties of bacteriorhodopsin in the two different purple membrane preparations are compared; although some differences in the absorption spectrum and the kinetic of the dark adaptation process are present, the reduction of native membrane glycocardiolipin content does not significantly affect the photocycle (M-intermediate rise and decay) as well as proton pumping of bacteriorhodopsin. However, interaction of the pumped proton with the membrane surface and its equilibration with the aqueous bulk phase are altered.  相似文献   

16.
17.
The Halobacterium salinarum catalase-peroxidase gene was subcloned into shuttle vectors pWL102 and pWL202 and expressed under the control of different archaeal promoters. When Hbt. salinarum was transformed with the catalase-peroxidase gene under the control of its own promoter, catalase-peroxidase activity increased twofold. Catalase-peroxidase activity increased threefold when Hbt. salinarum was transformed with the catalase-peroxidase gene under the control of a tRNA promoter. This bifunctional enzyme in Hbt. salinarum was not induced by environmental stresses such as H2O2, intense light, darkness, high temperature, low temperature, redox inhibitors, heavy metals, or ions. Received: May 5, 2000 / Accepted: August 28, 2000  相似文献   

18.
A fluorescence‐based live‐cell adhesion assay was used to examine biofilm formation by 20 different haloarchaea, including species of Halobacterium, Haloferax and Halorubrum, as well as novel natural isolates from an Antarctic salt lake. Thirteen of the 20 tested strains significantly adhered (P‐value < 0.05) to a plastic surface. Examination of adherent cell layers on glass surfaces by differential interference contrast, fluorescence and confocal microscopy showed two types of biofilm structures. Carpet‐like, multi‐layered biofilms containing micro‐ and macrocolonies (up to 50 μm in height) were formed by strains of Halobacterium salinarum and the Antarctic isolate t‐ADL strain DL24. The second type of biofilm, characterized by large aggregates of cells adhering to surfaces, was formed by Haloferax volcanii DSM 3757T and Halorubrum lacusprofundi DL28. Staining of the biofilms formed by the strongly adhesive haloarchaeal strains revealed the presence of extracellular polymers, such as eDNA and glycoconjugates, substances previously shown to stabilize bacterial biofilms. For Hbt. salinarum DSM 3754T and Hfx. volcanii DSM 3757T, cells adhered within 1 day of culture and remained viable for at least 2 months in mature biofilms. Adherent cells of Hbt. salinarum DSM 3754T showed several types of cellular appendages that could be involved in the initial attachment. Our results show that biofilm formation occurs in a surprisingly wide variety of haloarchaeal species.  相似文献   

19.
The synthesis of a series of retinal analogues containing the spiropyran moiety instead of trimethylcyclohexene ring was proposed. The interaction of the resulting retinal analogues with bacterioopsin from apomembranes of Halobacterium salinarum and the spectral characteristics of the new pigments were studied.  相似文献   

20.
Bakht O  Pathak P  London E 《Biophysical journal》2007,93(12):4307-4318
Despite the importance of lipid rafts, commonly defined as liquid-ordered domains rich in cholesterol and in lipids with high gel-to-fluid melting temperatures (Tm), the rules for raft formation in membranes are not completely understood. Here, a fluorescence-quenching strategy was used to define how lipids with low Tm, which tend to form disordered fluid domains at physiological temperatures, can stabilize ordered domain formation by cholesterol and high-Tm lipids (either sphingomyelin or dipalmitoylphosphatidylcholine). In bilayers containing mixtures of low-Tm phosphatidylcholines, cholesterol, and high-Tm lipid, the thermal stability of ordered domains decreased with the acyl-chain structure of low-Tm lipids in the following order: diarachadonyl > diphytanoyl > 1-palmitoyl 2-docosahexenoyl = 1,2 dioleoyl = dimyristoleoyl = 1-palmitoyl, 2-oleoyl (PO). This shows that low-Tm lipids with two acyl chains having very poor tight-packing propensities can stabilize ordered domain formation by high-Tm lipids and cholesterol. The effect of headgroup structure was also studied. We found that even in the absence of high-Tm lipids, mixtures of cholesterol with PO phosphatidylethanolamine (POPE) and PO phosphatidylserine (POPS) or with brain PE and brain PS showed a (borderline) tendency to form ordered domains. Because these lipids are abundant in the inner (cytofacial) leaflet of mammalian membranes, this raises the possibility that PE and PS could participate in inner-leaflet raft formation or stabilization. In bilayers containing ternary mixtures of PO lipids, cholesterol, and high-Tm lipids, the thermal stability of ordered domains decreased with the polar headgroup structure of PO lipids in the order PE > PS > phosphatidylcholine (PC). Analogous experiments using diphytanoyl acyl chain lipids in place of PO acyl chain lipids showed that the stabilization of ordered lipid domains by acyl chain and headgroup structure was not additive. This implies that it is likely that there are two largely mutually exclusive mechanisms by which low-Tm lipids can stabilize ordered domain formation by high-Tm lipids and cholesterol: 1), by having structures resulting in immiscibility of low-Tm and high-Tm lipids, and 2), by having structures allowing them to pack tightly within ordered domains to a significant degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号