首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel clade of cysteinyl leukotriene scavengers in soft ticks   总被引:2,自引:0,他引:2  
Inflammation is an important vertebrate defense mechanism against ecto-parasites for which ticks have evolved numerous mechanisms of modulation. AM-33 and TSGP4, related lipocalins from the soft ticks Argas monolakensis and Ornithodoros savignyi bind cysteinyl leukotrienes with high affinity as measured by isothermal titration calorimetry. This was confirmed in a smooth muscle bioassay that measured contraction of guinea pig ileum induced by leukotriene C(4) where both proteins inhibited contraction effectively. Conservation of this function in two diverse soft tick genera suggests that scavenging of cysteinyl leukotrienes evolved in the ancestral soft tick lineage. In addition soft ticks also evolved mechanisms that target other mediators of inflammation that include scavenging of histamine, serotonin, leukotriene B(4), thromboxane A(2), ATP and inhibition of the complement cascade. Inhibitors of blood-coagulation and platelet aggregation were also present in the ancestral soft tick lineage. Because histamine and cysteinyl leukotrienes are mainly produced by mast cells and basophils, and these cells are important in the mediation of tick rejection reactions, these findings indicate an ancient antagonistic relationship between ticks and the immune system. As such, modulation of the hemostatic system as well as inflammation was important adaptive responses in the evolution of a blood-feeding lifestyle in soft ticks.  相似文献   

2.
BACKGROUND: Hyperresponsiveness to histamine is a key feature of a variety of pathological conditions, including bronchial asthma, food allergy, colitis ulcerosa, and topical allergic disorders. Cells isolated from hyperresponsive individuals do not display exaggerated histamine responses ex vivo and thus the molecular mechanisms underlying histamine responsiveness remain obscure. Importantly, several in vivo observations implicate cysteinyl leukotrienes as possible mediators of increased histamine responses. We decided to investigate whether cysteinyl leukotrienes enhance the cellular reaction to histamine in cell types involved in pathological and immunological histamine hyperresponsiveness, as this might provide an in vitro system for studying histamine responsiveness and could shed light on the underlying molecular mechanisms. MATERIALS AND METHODS: Histamine responsiveness was determined by measuring histamine-induced prostaglandin E(2) production. Scatchard analysis was performed to determine the number of histamine H(1) receptors. Mouse macrophages, primary isolated human peripheral blood monocytes, and human umbilical smooth muscle cells were investigated before and after cysteinyl leukotriene stimulation. Results: In all three cell types tested, cysteinyl leukotrienes instantaneously enhanced histamine-induced prostaglandin E(2) production. This increase in prostaglandin E(2) production coincided with the immediate and transient appearance of additional H(1) receptors on the plasma membrane. CONCLUSIONS: Cysteinyl leukotrienes prime histamine responses by recruiting additional histamine receptors in immunologically relevant cell types in vitro.  相似文献   

3.
The dog model of ascaris airway sensitivity was chosen because of its frequency and its immunologic similarity to the human atopic asthmatic state. We studied the mediators of the antigen-induced airway response in vitro and the alterations in the in vivo and in vitro responsiveness to spasmogens evoked by antigen challenge. A myogenic basis of altered reactivity was suggested by the following: tetrodotoxin-insensitive spontaneous active tone; phasic contractions of airway smooth muscle; and responsiveness to leukotrienes C4 and D4. The pharmacologic characteristics of the antigen-induced airway smooth muscle contraction in vitro were similar to those induced by arachidonic acid and the leukotrienes only in some respects but were clearly different from those induced by compound 48/80. This suggested a predominant role for arachidonate lipoxygenase products. Histamine appeared to play a minor role in the antigen response. Comparisons were made between antigen-induced responses of actively and passively sensitized airways tissues. In the latter, histamine release appeared to contribute to the initial antigen-induced contraction and, unlike in actively sensitized airways, the responses were easily desensitized to repeated challenge. Alterations of airway responsiveness were demonstrated in vivo to acetylcholine and 5-HT following antigen challenge of highly ascaris-sensitive dogs. In vitro studies of passively sensitized muscle showed selectively enhanced response to 5-HT following antigen challenge. These studies support the presence of altered myogenic properties of airway smooth muscle and nonspecific increased airway responsiveness in this animal model.  相似文献   

4.
Nisoldipine, a calcium channel blocker having a highly potent effect on vascular smooth muscle relative to cardiac muscle, was tested to determine its anti-leukotriene properties. Nisoldipine, at concentrations from 1 to 300 ng/ml, significantly attenuated the vasoconstrictor effects of both LTC4 and LTD4 in isolated perfused cat coronary arteries and in isolated Langendorff perfused cat hearts. In isolated perfused coronary arteries, nisoldipine exerted a greater percentage inhibition of LTC4- and LTD4-induced constriction than of the constriction induced by the thromboxane analog, carbocyclic thromboxane A2 (CTA2). In isolated cat lung fragments, higher concentrations of nisoldipine were required to inhibit leukotriene formation (i.e., 10-200 microM). These concentrations of nisoldipine markedly inhibited the formation of the chemotactic leukotriene (LTB4) as well as the peptide leukotrienes (LTC4 and LTD4) stimulated by A-23187. Both types of leukotrienes were inhibited to a comparable degree. Thus, nisoldipine has significant anti-leukotriene actions. At normally employed concentrations, nisoldipine inhibits leukotriene actions on vascular smooth muscle, and at higher concentrations, it inhibits leukotriene formation.  相似文献   

5.
The effects of leukotriene D4, serotonin, and methacholine were studied on respiratory smooth muscle in vitro and respiratory responses in vivo in three strains of rats. These were an inbred strain of hyperresponsive rats, Sprague Dawley rats, and Fischer rats. Trachea from inbred rats responded in vitro to serotonin and methacholine but not to leukotrienes or histamine. Parenchyma from inbred rats responded to serotonin, methacholine, and leukotrienes. In vivo respiratory responses in inbred rats were observed after aerosol administration of histamine and serotonin, methacholine, and leukotriene D4. When these in vitro and in vivo experiments were repeated in Sprague Dawley and Fischer rats, a clear correlation was observed between the responses of strains of rats to aerosolized antigen and responses to spasmogenic mediators. It is concluded that inbred rats have a nonspecific bronchial hyperreactivity that contributes to their sensitivity to aerosolized antigen and that they may be a useful model for human asthmatic conditions.  相似文献   

6.
To determine whether the release of newly formed mediators such as the peptidoleukotrienes and platelet-activating factor might modulate the food protein induced jejunal smooth muscle contraction observed in sensitized rats, Hooded-Lister rats were sensitized by injection of ovalbumin (10 micrograms i.p.) and controls were sham sensitized with saline. Fourteen days later the contractility of longitudinally (n = 9) and circularly (n = 9) oriented jejunal segments (mucosa intact) were examined in standard tissue baths in response to antigen, leukotrienes, and platelet-activating factor alone and in the presence of a specific leukotriene receptor antagonist (MK-571), a 5-lipoxygenase inhibitor (L651,392), and a platelet-activating factor receptor antagonist (WEB 2086). Although the responses of control and sensitized tissues to stretch and 10(-4) M bethanechol were similar, only sensitized tissues contracted in response to antigen (1 mg/mL). MK-571 (10(-5) M) reduced or significantly inhibited the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M leukotrienes C4, D4, or E4, but neither L651,392 (10(-4) M) nor MK-571 (10(-5) M) significantly reduced the contractile response of sensitized tissues to antigen challenge. WEB 2086 (10(-4) M) significantly (p less than 0.01) reduced the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M platelet-activating factor but did not significantly alter the response to antigen in longitudinally (45% of control, p = 0.14) or circularly (118% of control, ns) oriented jejunal smooth muscle. In this model leukotrienes and platelet-activating factor play an insignificant role in modulating food protein induced jejunal smooth muscle contraction in intestinal anaphylaxis.  相似文献   

7.
Eosinophils accumulation in the airways and sustained eosinophil-derived cysteinyl leukotrienes production represent key elements of the inflammatory response seen in asthma. However, it is not known whether activated epithelial cells influence cysteinyl leukotrienes production by eosinophils from healthy valunteers. The aim of the present study was therefore to analyse the effects of interactions between non-atopic eosinophils and epithelial cells on cysteinyl leukotrienes production in vitro. We measured cysteinyl leukotrienes released by phorbol 12-myristate 13-acetate (PMA) -activated human eosinophils or epithelial cells (human bronchial epithelial cell line -BEAS-2B) cultured alone or together. While activated BEAS-2B cells barely formed leukotrienes (1.39 pg/ml +/- 0.2) (n=32), activated eosinophils produced considerable amount of them (62.25 pg/ml +/- 10.29) (n=32). Interestingly, when activated eosinophils and epithelial cells were co-incubated, production of cysteinyl leukotrienes increased substantially (571.1 pg/ml +/- 80.9) (n=32). Thus, eosinophil-epithelial cell interactions, when occur, are associated with increased biosythesis of cysteinyl leukotrienes.  相似文献   

8.
Adaptive immune responses begin after antigen-bearing dendritic cells (DCs) traffic from peripheral tissues to lymph nodes. Here, we show that DC migration from skin to lymph nodes utilizes the leukotriene C(4) (LTC(4)) transporter multidrug resistance-associated protein 1 (MRP1). DC mobilization from the epidermis and trafficking into lymphatic vessels was greatly reduced in MRP1(-/-) mice, but migration was restored by exogenous cysteinyl leukotrienes LTC(4) or LTD(4). In vitro, these cysteinyl leukotrienes promoted optimal chemotaxis to the chemokine CCL19, but not to other related chemokines. Antagonism of CCL19 in vivo prevented DC migration out of the epidermis. Thus, MRP-1 regulates DC migration to lymph nodes, apparently by transporting LTC(4), which in turn promotes chemotaxis to CCL19 and mobilization of DCs from the epidermis.  相似文献   

9.
Mast cells are tissue-resident immune cells that are capable of signaling many different cell types in vascularized tissue including epithelia and smooth muscle. We have developed an in vitro coculture system in which secretion of serotonin by a mucosal mast cell line (RBL-2H3) can be studied at a single cell level by measuring Ca2+ transients in fura-2 loaded mast cells and serotonin-sensitive A7r5 smooth muscle cells using fluorescence video microscopy and digital image processing. A7r5 cells elevate intracellular Ca2+ via 5HT2 receptors in response to bath-applied serotonin with an ED50 for serotonin of 550nM. Crosslinking lgE receptors with antigen caused Ca2+ transients in the mucosal mast cells. Ca2+ responses in the smooth muscle were detected ≈? 30–240 sec after the initiation of the mast cell Ca2+ responses. Smooth muscle Ca2+ responses were dependent on preloading mast cells with serotonin and were blocked by the 5HT2 antagonist ketanserin. The timing and magnitude of the smooth muscle responses indicated that secretion from mast cells can lead to local concentrations of serotonin in the range of 300 nM within 1 min of antigen stimulation. This coculture technique has allowed the first direct demonstration of serotonin-mediated signaling between immune cells and vascular elements. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The effects of endogenous arachidonic acid (AA) metabolites on inherent tone and histamine-induced constriction were studied in guinea pig tracheal smooth muscle. Inhibitors of either cyclooxygenase (indomethacin) or lipoxygenase (AA 861) significantly diminished the inherent tone of the muscle. Antagonists of prostaglandins (SC 19220) or leukotrienes (FPL 55712) also diminished the inherent tone, whereas an inhibitor of thromboxane synthase (OKY 046) had no significant effect. These results show that the metabolites of the lipoxygenase pathway as well as prostaglandins also participate in the maintenance of inherent tone. To reexamine the previously reported augmentation of histamine constriction induced by the inhibitors and the antagonists, we compared the active tension of the muscle measured from the maximum relaxed level as the base line to eliminate the fluctuation of inherent tone. Such comparison revealed that the inhibitors and the antagonists have no augmentative effect on either the maximum response to histamine or the concentration required to produce 50% of maximum active tension and that there is functional synergism between the exogenously added histamine and the endogenously produced AA metabolites. Therefore the zero active tension is useful as a base line to compare the contractile response of a drug-treated preparation with that of a nontreated preparation.  相似文献   

11.
Airway smooth muscle (ASM) from infant guinea pigs has less spontaneous relaxation during stimulation than ASM from adults. Inhibition of cyclooxygenase (COX), which catalyzes the production of prostanoids, increases this relaxation in infant ASM and abolishes age differences, thus suggesting that prostanoids reduce relaxation in infant ASM. In this study, we investigated whether leukotrienes are also involved in reducing spontaneous relaxation; whether the two COX isoforms, COX-1 and COX-2, differentially regulate spontaneous relaxation; and whether prostanoid release is developmentally regulated in guinea pig ASM. In different age groups, we measured relaxation during and after electrical stimulation in tracheal strips as well as prostanoid release from tracheal segments. Relaxation was studied in the absence and in the presence of a lipoxygenase inhibitor, a cysteinyl leukotriene receptor-1 antagonist, a COX-1 inhibitor, or a COX-2 inhibitor. We found that inhibition of lipoxygenase or cysteinyl leukotriene receptor-1 antagonism did not increase spontaneous relaxation at any age, thus excluding a role for leukotrienes in this phenomenon. Inhibition of COX-2, but not COX-1, promoted spontaneous relaxation. The basal release of prostanoids was more abundant in tissue from infant animals and decreased significantly with age. Thromboxane B2 was the most abundant metabolite released at all ages. Electrical stimulation and epithelium removal did not affect the age difference in prostanoid release. We conclude that increased basal prostanoid release contributes to the reduced spontaneous relaxation in immature guinea pig ASM compared with older animals. By regulating ASM relaxation, prostanoids may play a role in the airway hyperresponsiveness at a young age.  相似文献   

12.
Metabolism and analysis of cysteinyl leukotrienes in the monkey   总被引:11,自引:0,他引:11  
Predominant hepatobiliary elimination from blood and subsequent enterohepatic circulation of cysteinyl leukotrienes is demonstrated in the monkey Macaca fascicularis. From intravenous [3H]leukotriene C4, about 40% were recovered as metabolites in bile and about 20% in urine within 5 h. [3H]Leukotriene E4 was a predominant metabolite of defined structure in blood plasma, bile, and urine. From intraduodenal [3H]leukotriene C4, about 5% were recovered as metabolites in bile and about 8% in urine within 8 h. Endogenous cysteinyl leukotrienes generated in vivo were measured after implantation of a subcutaneously looped biliary bypass. Tapping of the loop allowed access to bile and prevented interference by leukotrienes produced by surgical trauma (Denzlinger, C., Rapp, S., Hagmann, W., and Keppler, D. (1985) Science 230, 330-332). Endogenous cysteinyl leukotrienes were analyzed in bile, urine, and blood plasma by the sequential use of high-performance liquid chromatography and a radioimmunoassay that was optimized for leukotriene E4 as a predominant metabolite detected in the tracer studies. Biliary leukotriene E4 rose from less than 0.2 to 9 nmol/liter, when leukotriene synthesis was elicited in anesthesized monkeys by staphylococcal enterotoxin B administered intragastrically. This study provides an approach to the analysis of cysteinyl leukotrienes in primates and serves to define the role of these mediators under pathophysiological as well as physiological conditions in vivo.  相似文献   

13.
The aim of the present study was to compare the effect of reduced oxygenation on the contractions of pulmonary vascular and airway smooth muscle induced by leukotriene D4 (LTD4) with those induced by histamine (an agonist with similar mechanisms of smooth muscle contraction) and KCl (a voltage-dependent stimulus). During hypoxia (PO2: 40 +/- 4 Torr) the responses of isolated porcine pulmonary artery and vein spiral strips to LTD4 increased approximately three- and two-fold, respectively, and the vein also exhibited an augmented response to histamine. The augmentation was blunted (LTD4) or reversed (histamine) during anoxia (PO2: 0 +/- 2 Torr). Responses to KCl were not systematically altered by reduced oxygenation. In contrast, the contractions of the guinea pig parenchymal lung strip by all three agonists were generally suppressed by reduced oxygenation. After reoxygenation, the contractile responses of each of the three smooth muscle preparations were generally increased compared with previous and concurrent base-line observations, particularly the LTD4-induced pulmonary vein contraction that increased approximately sevenfold after reoxygenation after anoxia. The contribution (if any) of leukotrienes to hypoxic pulmonary vasoconstriction may reflect increased vascular responsiveness to leukotrienes during hypoxia as well as (or instead of) increased leukotriene release.  相似文献   

14.
In the lung, the contraction of smooth muscle, or bronchospasm, is generally caused by an immunologic insult resulting in mast cell degranulation and the release of histamine, slow reacting substances, and other mediators of inflammation (1). Although the immediate response is bronchospasm, continued activation of this sequence of events results in a chronic inflammatory disease. In the uterus, numerous conditions can result in smooth muscle contraction. One major pathophysiological syndrome associated with increased uterine tone and severe rhythmic contraction is primary dysmenorrhea (2). In this disease state, prostaglandins have been shown to play a major role in these contractions (3,4), and inhibitors of cyclooxygenase have proven beneficial in clinical practice (5). Both dysmenorrhea and cervical ripening have been likened to inflammatory reactions due to varying degrees of vasodilation, invasion by inflammatory cells, proliferation of fibroblasts and smooth muscle contraction (6,7). Metabolism of arachidonic acid (AA) via cyclooxygenase to prostaglandins and thromboxanes and via lipoxygenase to hydroxyeicosatetraenoic acids (HETEs) and leukotrienes is an integral part of both the acute and chronic inflammatory reaction in the lung or uterus. The material reviewed here examines the effect of endogenous leukotrienes on both the lung and uterus and suggests that other smooth muscles and pathophysiological states may be more involved with the lipoxygenase pathway of AA metabolism than previously believed.  相似文献   

15.
The effects of Ascaris suum antigen on tracheal circulation and tracheal smooth muscle tone were compared in two groups of sheep: the first group was 1 yr old (14 sheep) and the second 5 yr old (8 sheep). Cranial tracheal arteries of anesthetized and paralyzed sheep were perfused at constant flow with monitoring of perfusion pressure. Tracheal smooth muscle tone was assessed by measuring changes in the external diameter of the cranial trachea. Close-arterial injection of antigen (1-20 micrograms) in young sheep produced dose-dependent vasodilation (6.1-15.5% fall in perfusion pressure) and smooth muscle contraction (0.06-0.28 mm reduction in tracheal diam). In old sheep, antigen (1-20 micrograms) produced vasoconstriction (4.1-16.8%) but no smooth muscle response. The smooth muscle contraction in young sheep was blocked by mepyramine (2 mg/kg iv) suggesting mediation by release of histamine. The vasodilation in young sheep and the vasoconstriction in old sheep were reduced by indomethacin (5 mg/kg iv), and the residual response was further reduced by FPL 55712 (2 mg/kg iv), suggesting mediation by both cyclooxygenase products and leukotrienes. Thus antigen given in the tracheal vasculature releases a mixture of inflammatory mediators. This mixture of mediators or their actions on the tracheal vasculature and smooth muscle may depend on the age of the sheep.  相似文献   

16.
The immunoregulatory cytokine IL-10 plays an essential role in down-modulating adaptive and innate immune responses leading to chronic inflammatory diseases. In contrast, cysteinyl leukotrienes (cysLTs), important proinflammatory mediators of cell trafficking and innate immune responses, are thought to enhance immune reactions in the pathogenesis of diseases, such as bronchial asthma, atherosclerosis, and pulmonary fibrosis. The aim of this study was to determine the IL-10 regulatory role in cysLT-induced activation of human monocytes and monocyte-derived dendritic cells. Herein we show that cysLT-induced activation and chemotaxis of human monocytes and monocyte-derived immature dendritic cells (iDC) are inhibited by IL-10 pretreatment. IL-10 down-regulated cysLT type 1 and 2 receptors' mRNA in a time- and concentration-dependent fashion. cysLT-induced activation of monocytes and iDCs measured by intracellular calcium flux and immediate-early gene expression (FBJ murine osteosarcoma viral oncogen homolog B and early growth response-2) was potently decreased by IL-10 and by the cysLT antagonist MK571. Chemotaxis of monocytes and iDCs to increasing concentrations of leukotriene D(4) (LTD(4)) was also inhibited by IL-10. LTD(4) enhanced iDC migration in response to CCL5. IL-10 selectively inhibited LTD(4)-induced chemotaxis without affecting migration to CCL5. These data indicate that cysLT-induced activation of human monocytes and dendritic cells may be specifically inhibited by IL-10, suggesting a direct link between the 5-lipoxygenase proinflammatory pathway and IL-10 regulatory mechanisms. Antileukotriene therapies may reproduce some regulatory mechanisms played by IL-10 in inflammatory processes.  相似文献   

17.
The cysteinyl leukotrienes (cys-LTs) mediate both acute and chronic inflammatory responses in mice, as demonstrated by the attenuation of the IgE/antigen-mediated increase in microvascular permeability and of bleomycin-induced pulmonary fibrosis, respectively, in a strain with targeted disruption of leukotriene C(4) synthase to prevent cys-LT synthesis. Our earlier finding that the acute, but not the chronic, injury was attenuated in a strain with targeted disruption of the cysteinyl leukotriene 1 (CysLT(1)) receptor suggested that the chronic injury might be mediated through the CysLT(2) receptor. Thus, we generated CysLT(2) receptor-deficient mice by targeted gene disruption. These mice developed normally and were fertile. The increased vascular permeability associated with IgE-dependent passive cutaneous anaphylaxis was significantly reduced in CysLT(2) receptor-null mice as compared with wild-type mice, whereas plasma protein extravasation in response to zymosan A-induced peritoneal inflammation was not altered. Alveolar septal thickening after intratracheal injection of bleomycin, characterized by interstitial infiltration with macrophages and fibroblasts and the accumulation of collagen fibers, was significantly reduced in CysLT(2) receptor-null mice as compared with the wild-type mice. The amounts of cys-LTs in bronchoalveolar lavage fluid after bleomycin injection were similar in the CysLT(2) receptor-null mice and the wild-type mice. Thus, in response to a particular pathobiologic event the CysLT(2) receptor can mediate an increase in vascular permeability in some tissues or promote chronic pulmonary inflammation with fibrosis.  相似文献   

18.
The contribution of smooth muscle cells as a potential source of eicosanoid production during inflammatory states remains to be elucidated. We investigated the effect of trinitrobenzene sulfonic acid (TNB), a known pro-inflammatory agent, on jejunal smooth muscle cell eicosanoid production. Human gut-derived smooth muscle cells (HISM) were incubated with TNB for 1 hour. Additionally, some cells were preincubated with either dimethylthiourea, or indomethacin for 1 hour before exposure to identical concentrations of TNB. Incubation with TNB led to significant increases in PGE(2) and 6-keto PGF-1(alpha) release, but not leukotriene B(4) release; responses which were both inhibited by dimethylthiourea and indomethacin treatment. Our results suggest that gutderived smooth muscle cells may represent an important source of proinflammatory prostanoids but not leukotrienes during inflammatory states of the intestine. The inhibition of prostanoid activity by thiourea may be mediated by suppression of cyclooxygenase activity in this cell line.  相似文献   

19.
We studied the effect of resting smooth muscle length on the contractile response of the major resistance airways (generations 0-5) in 18 mongrel dogs in vivo using tantalum bronchography. Dose-response curves to 10(-10) to 10(-7) mol/kg methacholine (MCh) were generated [at functional residual capacity (FRC)] by repeated intravenous bolus administration using tantalum bronchography after each dose. Airway constriction varied substantially with dose-equivalent stimulation and varied sequentially from trachea (8.8 +/- 2.2% change in airway diam) to fifth-generation bronchus (49.8 +/- 3.0%; P less than 0.001). Length-tension curves were generated for each airway to determine the airway diameter (i.e., resting in situ smooth muscle length) at which maximal constriction was elicited using bolus intravenous injection of 10(-8) mol/kg MCh. A Frank-Starling relationship was obtained for each airway; the transpulmonary pressure at which maximal constriction was elicited increased progressively from 2.50 +/- 1.12 cmH2O for trachea (approximately FRC) to 18.3 +/- 1.05 cmH2O for fifth-generation airways (approximately 50% TLC) (P less than 0.001). A similar relationship was obtained when change in airway diameter was plotted as a function of airway radius. We demonstrate substantial heterogeneity in the lung volumes at which maximal constriction is elicited and in distribution of parasympathomimetic constriction within the first few generations of resistance bronchi. Our data also suggest that lung hyperinflation may lead to augmented airway contractile responses by shifting resting smooth muscle length toward optimum resting smooth muscle length.  相似文献   

20.
To assess the role of structures located superficially near the ventrolateral surface of the medulla on the reflex constriction of tracheal smooth muscle that occurs when airway and pulmonary receptors are stimulated mechanically or chemically, experiments were conducted in alpha-chloralose-anesthetized, paralyzed, and artificially ventilated cats. Pressure changes within a bypassed segment of the trachea were used as an index of alterations smooth muscle tone. The effects of focal cooling of the intermediate areas or topically applied lidocaine on the ventral surface of the medulla on the response of the trachea to mechanical and chemical stimulation of airway receptors were examined. Atropine abolished tracheal constriction induced by mechanical stimulation of the carina or aerosolized histamine, showing that the responses were mediated over vagal pathways. Moderate cooling of the intermediate area (20 degrees C) or local application of lidocaine significantly decreased the tracheal constrictive response to mechanical activation of airway receptors. Furthermore, when the trachea was constricted by histamine, cooling of the intermediate area significantly diminished the increased tracheal tone, whereas rewarming restored tracheal tone to the previous level. These findings suggest that under the conditions of the experiments the ventral surface of the medulla plays an important role in constriction of the trachea by inputs from intrapulmonary receptors and in the modulation of parasympathetic outflow to airway smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号