首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
3.
Cells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G1 and G2 checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Δ mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Δ cells. Yeast cell cycle regulation in response to arsenite and the role of Hog1 in this process have not yet been analyzed. Here, we found that long-term exposure to arsenite led to transient G1 and G2 delays in wild-type cells, whereas cells that lack the HOG1 gene or are defective in Hog1 kinase activity displayed persistent G1 cell cycle arrest. Elevated levels of intracellular arsenite and “cross talk” between the HOG and pheromone response pathways, observed in arsenite-treated hog1Δ cells, prolonged the G1 delay but did not cause a persistent G1 arrest. In contrast, deletion of the SIC1 gene encoding a cyclin-dependent kinase inhibitor fully suppressed the observed block of G1 exit in hog1Δ cells. Moreover, the Sic1 protein was stabilized in arsenite-treated hog1Δ cells. Interestingly, Sic1-dependent persistent G1 arrest was also observed in hog1Δ cells during hyperosmotic stress. Taken together, our data point to an important role of the Hog1 kinase in adaptation to stress-induced G1 cell cycle arrest.  相似文献   

4.
5.
6.
7.
Activation of stress-activated protein kinases (SAPKs) is essential for proper cell adaptation to extracellular stimuli. The exposure of yeast cells to high osmolarity, or mutations that lead to activation of the Hog1 SAPK, result in cell-cycle arrest. The mechanisms by which Hog1 and SAPKs in general regulate cell-cycle progression are not completely understood. Here we show that Hog1 regulates cell cycle progression at the G1 phase by a dual mechanism that involves downregulation of cyclin expression and direct targeting of the CDK-inhibitor protein Sic1. Hog1 interacts physically with Sic1 in vivo and in vitro, and phosphorylates a single residue at the carboxyl terminus of Sic1, which, in combination with the downregulation of cyclin expression, results in Sic1 stabilization and inhibition of cell-cycle progression. Cells lacking Sic1 or containing a Sic1 allele mutated in the Hog1 phosphorylation site are unable to arrest at G1 phase after Hog1 activation, and become sensitive to osmostress. Together, our data indicate that the Sic1 CDK-inhibitor is the molecular target for the SAPK Hog1 that is required to modulate cell-cycle progression in response to stress.  相似文献   

8.
Inbal Maayan 《FEBS letters》2009,583(12):2015-1148
The yeast HOG pathway is activated in response to increased osmolarity and affects many cellular activities. As cells lacking Hog1 are osmo-sensitive it is believed that Hog1 is essential for survival under osmostress. We show, however, that hog1Δ cells survive and even proliferate to some degree under high osmostress for many hours. If forced to enter G1/G0 prior the exposure to osmostress, hog1Δ cells survive for at least 6 days. We suggest that the primary role of Hog1 is not to preserve viability upon exposure to stress. We discuss the possibility that Hog1 is needed for proliferation under osmostress.  相似文献   

9.
The genome-wide set of Saccharomyces cerevisiae deletion strains provides the opportunity to analyze how other organisms may respond to toxic agents. Since arsenic trioxide selectively kills human acute promyelocytic leukemia (APL) cells by a poorly understood mechanism we screened the yeast deletion strains for sensitivity or resistance. In addition to confirming mutants previously identified as sensitive to sodium arsenite, a large number of additional genes, and cellular processes, were required for arsenic trioxide tolerance. Of the 4546 mutants, 7.6% were more sensitive to arsenic trioxide than the wild type, while 1.5% was more resistant. IC50 values for all sensitive and resistant mutants were determined. Prominent as sensitive was that missing the MAP kinase, Hog1. The most resistant lacked the plasma-membrane glycerol and arsenite transporter, Fps1. Hog1 and Fps1 control the response to osmotic stress in yeast by regulating glycerol production and plasma membrane flux, respectively. We therefore tested whether APL cells have impaired osmoregulation. The APL cell line NB4 did not produce glycerol in response to osmotic stress and underwent apoptotic cell death. Moreover, the glycerol content of NB4 and differentiated NB4 cells correlated with the level of arsenic trioxide uptake and the sensitivity of the cells. Additionally, NB4 cells accumulated more arsenic trioxide than non-APL cells and were more sensitive. These findings demonstrate the usefulness of the S. cerevisiae deletion set and show that the selectivity of arsenic trioxide for APL cells relates, at least in part, to impaired osmoregulation and control of uptake of the drug.  相似文献   

10.
11.
12.
The yeast Fps1 protein is an aquaglyceroporin that functions as the major facilitator of glycerol transport in response to changes in extracellular osmolarity. Although the High Osmolarity Glycerol pathway is thought to have a function in at least basal control of Fps1 activity, its mode of regulation is not understood. We describe the identification of a pair of positive regulators of the Fps1 glycerol channel, Rgc1 (Ypr115w) and Rgc2 (Ask10). An rgc1/2Δ mutant experiences cell wall stress that results from osmotic pressure associated with hyper-accumulation of glycerol. Accumulation of glycerol in the rgc1/2Δ mutant results from a defect in Fps1 activity as evidenced by suppression of the defect through Fps1 overexpression, failure to release glycerol upon hypo-osmotic shock, and resistance to arsenite, a toxic metalloid that enters the cell through Fps1. Regulation of Fps1 by Rgc1/2 appears to be indirect; however, evidence is presented supporting the view that Rgc1/2 regulate Fps1 channel activity, rather than its expression, folding, or localization. Rgc2 was phosphorylated in response to stresses that lead to regulation of Fps1. This stress-induced phosphorylation was partially dependent on the Hog1 MAPK. Hog1 was also required for basal phosphorylation of Rgc2, suggesting a mechanism by which Hog1 may regulate Fps1 indirectly.  相似文献   

13.
14.
15.
Previous work has implicated the Hog1 stress-activated protein kinase (SAPK) in osmotic and oxidative stress responses in the human pathogen Candida albicans. In this study, we have characterized the role of Hog1 in mediating these and other stress responses in C. albicans. We provide evidence that a SAPK-dependent core stress response exists in this pathogen. The Hog1 SAPK is phosphorylated and it accumulates in the nucleus in response to diverse stress conditions. In addition, we have identified Hog1-regulated genes that are induced in response to stress conditions that activate Hog1. These analyses reveal both activator and repressor functions for the Hog1 SAPK. Our results also demonstrate that stress cross-protection, a classical hallmark of the core stress response, occurs in C. albicans between stresses that activate the Hog1 SAPK. Importantly, we find that the core stress response in C. albicans has adapted to the environmental niche of this human pathogen. This niche specificity is reflected by the specific environmental conditions that drive the Hog1-regulated core stress response in C. albicans and by differences in the molecular circuitry that control this response.  相似文献   

16.
17.
The Hog1 stress-activated protein kinase regulates both stress responses and morphogenesis in Candida albicans and is essential for the virulence of this major human pathogen. Stress-induced Hog1 phosphorylation is regulated by the upstream MAPKK, Pbs2, which in turn is regulated by the MAPKKK, Ssk2. Here, we have investigated the role of phosphorylation of Hog1 and Pbs2 in Hog1-mediated processes in C. albicans. Mutation of the consensus regulatory phosphorylation sites of Hog1 (Thr-174/Tyr-176) and Pbs2 (Ser-355/Thr-359), to nonphosphorylatable residues, resulted in strains that phenocopied hog1Δ and pbs2Δ cells. Consistent with this, stress-induced phosphorylation of Hog1 was abolished in cells expressing nonphosphorylatable Pbs2 (Pbs2(AA)). However, mutation of the consensus sites of Pbs2 to phosphomimetic residues (Pbs2(DD)) failed to constitutively activate Hog1. Furthermore, Ssk2-independent stress-induced Hog1 activation was observed in Pbs2(DD) cells. Collectively, these data reveal a previously uncharacterized MAPKKK-independent mechanism of Hog1 activation in response to stress. Although Pbs2(DD) cells did not exhibit high basal levels of Hog1 phosphorylation, overexpression of an N-terminal truncated form of Ssk2 did result in constitutive Hog1 activation, which was further increased upon stress. Significantly, both Pbs2(AA) and Pbs2(DD) cells displayed impaired stress resistance and attenuated virulence in a mouse model of disease, whereas only Pbs2(AA) cells exhibited the morphological defects associated with loss of Hog1 function. This indicates that Hog1 mediates C. albicans virulence by conferring stress resistance rather than regulating morphogenesis.  相似文献   

18.
19.
20.
Mitogen-activated protein kinases are crucial components in the life of eukaryotic cells. The current dogma for MAPK activation is that dual phosphorylation of neighboring Thr and Tyr residues at the phosphorylation lip is an absolute requirement for their catalytic and biological activity. In this study we addressed the role of Tyr and Thr phosphorylation in the yeast MAPK Hog1/p38. Taking advantage of the recently isolated hyperactive mutants, whose intrinsic basal activity is independent of upstream regulation, we demonstrate that Tyr-176 is not required for basal catalytic and biological activity but is essential for the salt-induced amplification of Hog1 catalysis. We show that intact Thr-174 is absolutely essential for biology and catalysis of the mutants but is mainly required for structural reasons and not as a phosphoacceptor. The roles of Thr-174 and Tyr-176 in wild type Hog1 molecules were also tested. Unexpectedly we found that Hog1(Y176F) is biologically active, capable of induction of Hog1 target genes and of rescuing hog1Delta cells from osmotic stress. Hog1(Y176F) was not able, however, to mediate growth arrest induced by constitutively active MAPK kinase/Pbs2. We propose that Thr-174 is essential for stabilizing the basal active conformation, whereas Tyr-176 is not. Tyr-176 serves as a regulatory element required for stimuli-induced amplification of kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号