首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary objective of this study was to determine whether caspases are involved in arsenic trioxide(ATO)-induced apoptosis of human myeloid leukemia cells. A secondary objective was to determine whether apoptosis induced by ATO compared with VP-16 is differentially affected by an activator of protein kinase C (PKC), phorbol 12-myristate 13-acetate (PMA), which has been reported to inhibit apoptosis induced by some chemotherapeutic agents. NB4 and HL60 cells were incubated with ATO in the presence and absence of the caspase protease inhibitors Z-VAD.fmk or Y-VAD. cho. Apoptosis was assessed by morphology, DNA laddering and flow cytometry. Poly (ADP-ribose) polymerase (PARP) cleavage was used as a marker for the activation of caspases. PARP cleavage occurred during ATO-induced apoptosis in both NB4 and HL60 cells. Z-VAD.fmk, a broad-spectrum inhibtor, could block ATO-induced apoptosis and PARP cleavage, whilst Y-VAD. cho, a selective inhibitor of caspase 1, had no such effect. PMA pre-incubation for up to 8 hours under conditions known to activate PKC had no effect on either ATO- or VP-16-induced apoptosis. We conclude that in cultured myeloid leukemia cells ATO-induced apoptosis is executed by caspases from the distal, PARP-cleaving part of the activation cascade and that PKC activation has no effect on apoptosis induced by either ATO or VP-16 in these cells.  相似文献   

2.
Caspase-dependent activation of calpain during drug-induced apoptosis   总被引:16,自引:0,他引:16  
We have previously demonstrated that calpain is responsible for the cleavage of Bax, a proapoptotic protein, during drug-induced apoptosis of HL-60 cells (Wood, D. E., Thomas, A., Devi, L. A., Berman, Y., Beavis, R. C., Reed, J. C., and Newcomb, E. W. (1998) Oncogene 17, 1069-1078). Here we show the sequential activation of caspases and calpain during drug-induced apoptosis of HL-60 cells. Time course experiments using the topoisomerase I inhibitor 9-amino-20(S)-camptothecin revealed that cleavage of caspase-3 substrates poly(ADP-ribose) polymerase (PARP) and the retinoblastoma protein as well as DNA fragmentation occurred several hours before calpain activation and Bax cleavage. Pretreatment with the calpain inhibitor calpeptin blocked calpain activation and Bax cleavage but did not inhibit PARP cleavage, DNA fragmentation, or 9-amino-20(S)-camptothecin-induced morphological changes and cell death. Pretreatment with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk) inhibited PARP cleavage, DNA fragmentation, calpain activation, and Bax cleavage and increased cell survival by 40%. Interestingly, Z-VAD-fmk-treated cells died in a caspase- and calpain-independent manner that appeared morphologically distinct from apoptosis. Our results suggest that excessive or uncontrolled calpain activity may play a role downstream of and distinct from caspases in the degradation phase of apoptosis.  相似文献   

3.
Poly (ADP-ribose) polymerase cleavage monitored in situ in apoptotic cells   总被引:5,自引:0,他引:5  
During apoptosis, the activation of a family of cysteine proteases, or caspases, results in proteolytic cleavage of numerous substrates. Antibody probes specific for neoepitopes on protein fragments generated by caspase cleavage provide a means to monitor caspase activity at the level of the individual cell. Poly (ADP-ribose) polymerase (PARP), a nuclear enzyme involved in DNA repair, is a well-known substrate for caspase-3 cleavage during apoptosis. Its cleavage is considered to be a hallmark of apoptosis. Here, we demonstrate that an affinity-purified polyclonal antibody to the p85 fragment of PARP is specific for apoptotic cells. Western blots show that the antibody recognizes the 85-kDa (p85) fragment of PARP but not full-length PARP. We demonstrate a time course of PARP cleavage and DNA fragmentation in situ using the PARP p85 fragment antibody and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) in Jurkat cells treated with anti-Fas. Furthermore, our results indicate that the p85 fragment of PARP resulting from caspase cleavage during apoptosis is rapidly localized outside the condensed chromatin but not in the cytoplasm.  相似文献   

4.
Bacterial infection induces apoptotic cell death in human monoblastic U937 cells that have been pretreated with interferon gamma (U937IFN). Apoptosis occurs in a manner that is independent of bacterial virulence proteins. In the present study, we show that lipopolysaccharide (LPS), a membrane constituent of gram-negative bacteria, also induces apoptosis in U937IFN cells. LPS treatment led to the appearance of characteristic markers of apoptosis such as nuclear fragmentation and activation of caspases. While the caspase inhibitor Z-VAD-fmk prevented LPS-induced apoptosis as judged by its inhibition of nuclear fragmentation, it failed to inhibit cytochrome c release and loss of mitochondrial membrane potential. Transfection of peptides containing the BH4 (Bcl-2 homology 4) domain derived from the anti-apoptotic protein Bcl-XL blocked LPS-induced nuclear fragmentation and the limited digestion of PARP. These results suggest that LPS does not require caspase activation to induce mitochondrial dysfunction and that mitochondria play a crucial role in the regulation of LPS-mediated apoptosis in U937IFN cells.  相似文献   

5.
Pierisin-1, a 98-kDa protein that induces apoptosis in mammalian cell lines, is capable of being incorporated into cells where it ADP-ribosylates guanine residues in DNA. To investigate the apoptotic pathway induced by this unique protein, the bcl-2 gene was transfected into HeLa cells. Cy2-fluorescent pierisin-1 was incorporated into the resultant cells expressing Bcl-2 protein and ADP-ribosylated dG was detected to almost the same extent as in parent cells. However, bcl-2-transfected HeLa cells did not display apoptotic morphological changes, PARP cleavage, and DNA fragmentation, indicating acquisition of resistance. In parent HeLa cells, activation of caspase-9 and release of cytochrome c were observed after 8h treatment with 0.5ng/ml pierisin-1. Caspase substrate assays revealed further cleavage of Ac-DEVD-pNA, Ac-VDVAD-pNA, and Ac-VEID-pNA, suggesting activation of caspase-2, -3, and -6 in pierisin-1-treated HeLa cells. The caspase-3 inhibitor, Ac-DEVD-CHO, was also found to inhibit apoptosis. In contrast, this caspase activation was not observed in bcl-2-transfected HeLa cells. Our results thus indicate that pierisin-1-induced apoptosis is mediated primarily via a mitochondrial pathway involving Bcl-2 and caspases.  相似文献   

6.
PKC inhibitor safingol suppressed the growth of human oral squamous cell carcinoma (SCC) cells significantly at concentrations that inhibit PKC isoforms. Safingol inhibited the translocation of PKC following treatment with 12-o-tetradecanoylphorbol 13-acetate (TPA) in PKC α-EGFP-transfected cells, but not in PKC β-EGFP- transfected cells, indicating selective inhibition for PKC α in oral SCC cells. Flow cytometric analysis and DNA analysis by agarose gel electrophoresis revealed an increase in the proportion of sub-G1 cells and DNA fragmentation in safingol-treated cells. Mitochondrial membrane potential was decreased, and cytochrome c was released from mitochondria. However, the safingol-induced cell death was not accompanied by activation of caspase 3 and cleavage of poly (ADP-ribose) polymerase (PARP). The broad-spectrum caspase inhibitor BD-fmk failed to prevent safingol-induced cell death. Another apoptogenic factor endonuclease G, but not apoptosis-inducing factor (AIF), was also released from mitochondria and translocated to the nucleus. These results suggest that PKC α inhibitor safingol induces an endonuclease G- mediated apoptosis in a caspase-independent manner.  相似文献   

7.
7-hydroxystaurosporine (UCN-01) is a more selective protein kinase C inhibitor than staurosporine. UCN-01 exhibits antitumor activity in experimental tumor models and is presently in clinical trials. Our study reveals that human myeloblastic leukemia HL60 and K562 and colon carcinoma HT29 cells undergo internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis after UCN-01 treatment. These three cell lines lack functional p53, and K562 and HT29 cells are usually resistant to apoptosis. DNA fragmentation in HT29 and K562 cells occurred after 1 day of treatment while it took less than 4 h in HL60 cells. Cycloheximide prevented UCN-01-induced DNA fragmentation in HT-29 cells, but not in HL60 and K562 cells, suggesting that macromolecular synthesis is selectively required for apoptotic DNA fragmentation in HT29 cells. UCN-01-induced DNA fragmentation was preceded by activation of cyclin B1/cdc2 kinase. Further studies in HL60 cells showed that UCN-01-induced apoptosis was associated with degradation of CPP32, PARP, and lamin B and that the inhibitor of caspases (ICE/CED-3 cysteine proteases), Z-VAD-FMK, and the serine protease inhibitor, DCI, protected HL60 cells from UCN-01-induced DNA fragmentation. However, only DCI and TPCK, but not Z-VAD-FMK, inhibited DNA fragmentation in the HL60 cell-free system, suggesting that serine protease(s) may play a role in the execution phase of apoptosis in HL60 cells treated with UCN-01. Z-VAD-FMK and DCI also inhibited apoptosis in HT29 cells. These data demonstrate that the protein kinase C inhibitor and antitumor agent, UCN-01 is a potent apoptosis inducer in cell lines that are usually resistant to apoptosis and lack p53 and that caspases and probably serine proteases are activated during UCN-01-induced apoptosis.  相似文献   

8.
Transforming growth factor beta (TGF-beta) is a potent growth inhibitor and inducer of cell death in B-lymphocytes and is essential for immune regulation and maintenance of self-tolerance. In this report the mouse immature B cell line, WEHI 231, was used to examine the mechanisms involved in TGF-beta-mediated apoptosis. Induction of apoptosis is detected as early as 8 h after TGF-beta administration. Coincident with the onset of apoptosis, the cytoskeletal actin-binding protein, alphaII-spectrin (alpha-fodrin) is cleaved into 150-, 115-, and 110-kDa fragments. The broad spectrum caspase inhibitor (Boc-D-fmk (BD-fmk)) completely abolished TGF-beta-induced apoptosis and alphaII-spectrin cleavage. Caspase 3, although present in WEH1 231 cells, was not activated by TGF-beta, nor was its substrate, poly(ADP-ribose) polymerase. These results identify alphaII-spectrin as a novel substrate that is cleaved during TGF-beta-induced apoptosis. Our data provide the first evidence of calpain and caspase 3-independent cleavage of alphaII-spectrin during apoptosis and suggests that TGF-beta induces apoptosis and alphaII-spectrin cleavage via a potentially novel caspase. This report also provides the first direct evidence of caspase 3 activation in WEH1 231 cells and indicates that at least two distinct apoptotic pathways exist.  相似文献   

9.
Selenadiazole derivative is one kind of synthetic organoselenium compounds with potent and broad-spectrum antitumor activity. In this study, we showed that anthrax [1,2-c] [1,2,5] selenadiazolo-6,11-dione (ASDO), an novel selenadiazole derivative, induced time- and dose-dependent apoptotic cell death in MCF-7 human breast carcinoma cells, as indicated by accumulation of sub-G1 cell population, DNA fragmentation, nuclear condensation, caspase activation and PARP cleavage. ASDO-induced apoptosis was significantly inhibited by a general caspase inhibitor z-VAD-fmk, demonstrating the important role of caspases in ASDO-induced apoptotic pathway. Treatment of MCF-7 cells with ASDO resulted in a rapid depletion of mitochondrial membrane potential and release of cytochrome c and Smac/Diablo through up-regulation of Bax, Bad and PUMA expression and down-regulation of Bcl-xl expression. Moreover, ASDO treatment up-regulated the expression levels of total p53 and its target gene p21Waf1. Silencing of p53 activation with RNA interference effectively blocked the ASDO-induced cell PARP cleavage, DNA fragmentation and caspase activation. Furthermore, ASDO-induced apoptosis was interestingly found to be independent of reactive oxygen species production. Taken together, we conclude that ASDO induces MCF-7 cell apoptosis through a p53-dependent and mitochondria-mediated pathway.  相似文献   

10.
Accumulation of putrescine in ornithine decarboxylase overproducing cells provokes apoptotic death that is inhibited by 2-difluoromethylornithine, a specific inhibitor of ODC. The apoptotic process provoked by putrescine involves the release of cytochrome c from the mitochondria and activation of caspases cascades demonstrated by the cleavage of caspase-2, polyA-ribose polymerase (PARP), and proteolytic cleavage of the translation initiation factor 4G (eIF4G). The general caspases inhibitor BD-fmk inhibits PARP cleavage but not cell death. Aminoguanidine, an inhibitor of amine oxidases, inhibits the cleavage of PARP and cell death, whereas the antioxidant BHA inhibits PARP cleavage but not cell death. The intracellular Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester (BAPTA/AM) inhibits both PARP cleavage and cell death. Although the ability of BAPTA/AM to inhibit the induction of apoptosis may suggest that the accumulating putrescine stimulates the release of Ca2+, such a Ca2+ elevation was not observed. We suggest that the accumulation of putrescine leads to oxidative stress that causes cell death.  相似文献   

11.
12.
Activation of poly(ADP-ribose) polymerase (PARP) by DNA breaks catalyzes poly(ADP-ribosyl)ation and results in depletion of NAD+ and ATP, which is thought to induce necrosis. Proteolytic cleavage of PARP by caspases is a hallmark of apoptosis. To investigate whether PARP cleavage plays a role in apoptosis and in the decision of cells to undergo apoptosis or necrosis, we introduced a point mutation into the cleavage site (DEVD) of PARP that renders the protein resistant to caspase cleavage in vitro and in vivo. Here, we show that after treatment with tumor necrosis factor alpha, fibroblasts expressing this caspase-resistant PARP exhibited an accelerated cell death. This enhanced cell death is attributable to the induction of necrosis and an increased apoptosis and was coupled with depletion of NAD+ and ATP that occurred only in cells expressing caspase-resistant PARP. The PARP inhibitor 3-aminobenzamide prevented the NAD+ drop and concomitantly inhibited necrosis and the elevated apoptosis. These data indicate that this accelerated cell death is due to NAD+ depletion, a mechanism known to kill various cell types, caused by activation of uncleaved PARP after DNA fragmentation. The present study demonstrates that PARP cleavage prevents induction of necrosis during apoptosis and ensures appropriate execution of caspase-mediated programmed cell death.  相似文献   

13.
The mechanism by which transforming growth factor-beta1 (TGF-beta1) induces apoptosis of prostate epithelial cells was studied in the NRP-154 rat prostate epithelial cell line. TGF-beta 1 down-regulates expression of Bcl-xL and poly(ADP-ribosyl)polymerase (PARP), promotes cytochrome c release, up-regulates expression of latent caspase-3, and activates caspases 3 and 9. We tested the role of Bcl-xL in this cascade by stably overexpressing Bcl-xL to prevent loss by TGF-beta 1. Clones overexpressing Bcl-xL are resistant to TGF-beta 1 with respect to induction of apoptosis, cytochrome c release, activation of caspases 9 and 3, and cleavage of PARP; yet they remain sensitive to TGF-beta 1 by cell cycle arrest, induction of both fibronectin and latent caspase-3 expression, and loss of PARP expression. We show that Bcl-xL associates with Apaf-1 in NRP-154 cells; but this association does not inhibit the activation of caspases 9 and 3 by cytochrome c. Together, our data suggest that TGF-beta1 induces apoptosis through loss of Bcl-xL, leading to cytochrome c release and the subsequent activation of caspases 9 and 3. Moreover, our data demonstrate that the antiapoptotic effect of Bcl-xL occurs by inhibition of mitochondrial cytochrome c release and not through antagonizing Apaf-1-dependent processing of caspases 9 and 3.  相似文献   

14.
Cortical function has been suggested to be highly compromised by repeated heroin self-administration. We have previously shown that street heroin induces apoptosis in neuronal-like PC12 cells. Thus, we analysed the apoptotic pathways involved in street heroin neurotoxicity using primary cultures of rat cortical neurons. Our street heroin sample was shown to be mainly composed by heroin, 6-monoacetylmorphine and morphine. Exposure of cortical neurons to street heroin induced a slight decrease in metabolic viability, without loss of neuronal integrity. Early activation of caspases involved in the mitochondrial apoptotic pathway was observed, culminating in caspase 3 activation, Poly-ADP Ribose Polymerase (PARP) cleavage and DNA fragmentation. Apoptotic morphology was completely prevented by the non-selective caspase inhibitor z-VAD-fmk, indicating an important role for caspases in neurodegeneration induced by street heroin. Ionotropic glutamate receptors, opioid receptors and oxidative stress were not involved in caspase 3 activation. Interestingly, street heroin cytotoxicity was shown to be independent of a functional mitochondrial respiratory chain, as determined using NT-2 rho(0) cells. Nonetheless, in street heroin-treated cortical neurons, cytochrome c was released, accompanied by a decrease in mitochondrial potential and Bcl-2/Bax. Pure heroin hydrochloride similarly decreased metabolic viability but only slightly activated caspase 3. Altogether, our data suggest an important role for mitochondria in mediating street heroin neurotoxic effects.  相似文献   

15.
In the present investigations, we have shown differential cleavage of cellular PARP and a caspase 3-selective synthetic tetrapeptide substrate, Z-DEVD-AFC or Ac-DEVD-AMC using a T lymphoblastoid cell line Jurkat, and its variant clone E6.1(J-E6). Anti-Fas antibody-mediated apoptosis resulted in DNA fragmentation and PARP cleavage in both Jurkat and J-E6 cells. However, unlike Jurkat, J-E6 cells did not cleave a synthetic tetrapeptide substrate efficiently. The failure to cleave the DEVD tetrapeptide by apoptotic J-E6 cells was not due to insufficient expression or processing of caspase 3 in J-E6 cells. Interestingly, when the J-E6 cells were transiently transfected with a cDNA encoding caspase 3, efficient cleavage of Z-DEVD-AFC was achieved. The observations that apoptotic J-E6 cells barely cleaved a synthetic DEVD tetrapeptide, but efficiently cleaved endogenous PARP, potentially at the most preferred DEVD site, suggest that active caspases may have disparate characteristics to recognize substrates presented in different context.  相似文献   

16.
Methylglyoxal (MG) is a physiological metabolite, but it is known to be toxic, inducing stress in cells and causing apoptosis. This study examines molecular mechanisms in the MG-induced signal transduction leading to apoptosis, focusing particularly on the role of JNK activation. We first confirmed that MG caused apoptosis in Jurkat cells and that it was cell type dependent because it failed to induce apoptosis in MOLT-4, HeLa, or COS-7 cells. A caspase inhibitor, Z-DEVD-fmk, completely blocked MG-induced poly(ADP-ribose)polymerase (PARP) cleavage and apoptosis, showing the critical role of caspase activation. Inhibition of JNK activity by a JNK inhibitor, curcumin, remarkably reduced MG-induced caspase-3 activation, PARP cleavage, and apoptosis. Stable expression of the dominant negative mutant of JNK also protected cells against apoptosis notably, although not completely. Correspondingly, loss of the mitochondrial membrane potential induced by MG was decreased by the dominant negative JNK. These results confirmed a crucial role of JNK working upstream of caspases, as well as an involvement of JNK in affecting the mitochondrial membrane potential.  相似文献   

17.
Death ligands not only induce apoptosis but can also trigger necrosis with distinct biochemical and morphological features. We recently showed that in L929 cells CD95 ligation induces apoptosis, whereas TNF elicits necrosis. Treatment with anti-CD95 resulted in typical apoptosis characterized by caspase activation and DNA fragmentation. These events were barely induced by TNF, although TNF triggered cell death to a similar extent as CD95. Surprisingly, whereas the caspase inhibitor zVAD prevented CD95-mediated apoptosis, it potentiated TNF-induced necrosis. Cotreatment with TNF and zVAD was characterized by ATP depletion and accelerated necrosis. To investigate the mechanisms underlying TNF-induced cell death and its potentiation by zVAD, we examined the role of poly(ADP-ribose)polymerase-1 (PARP-1). TNF but not CD95 mediated PARP activation, whereas a PARP inhibitor suppressed TNF-induced necrosis and the sensitizing effect of zVAD. In addition, fibroblasts expressing a noncleavable PARP-1 mutant were more sensitive to TNF than wild-type cells. Our results indicate that TNF induces PARP activation leading to ATP depletion and subsequent necrosis. In contrast, in CD95-mediated apoptosis caspases cause PARP-1 cleavage and thereby maintain ATP levels. Because ATP is required for apoptosis, we suggest that PARP-1 cleavage functions as a molecular switch between apoptotic and necrotic modes of death receptor-induced cell death.  相似文献   

18.
Latent membrane protein 2A (LMP2A) blocks B-cell receptor signal transduction in vitro by binding the Syk and Lyn protein tyrosine kinases. As well as blocking B-cell signal transduction, LMP2A has been shown to activate the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway, which acts as a survival signal in both B cells and epithelial cells. Transforming growth factor beta 1 (TGF-beta 1) is a multifunctional cytokine that plays important roles in regulating cell growth and differentiation in many biological systems. The loss of the growth-inhibitory response to the TGF-beta 1 signal is found in many cancers and is widely thought to promote tumor development. In this study, we found that LMP2A induced the phosphorylation of Akt (serine 473) in Burkitt's lymphoma cell line Ramos and in gastric carcinoma cell line HSC-39 and partially enhanced cell viability following TGF-beta 1 treatment. In addition, LMP2A partially inhibited TGF-beta 1-induced DNA fragmentation and cleavage of poly(ADP-ribose) polymerase (PARP). In the presence of LY294002, an inhibitor of PI3-K, the LMP2A-mediated inhibitory effects on TGF-beta 1-induced DNA fragmentation and cleavage of PARP were alleviated. Furthermore, LMP2A did not alter the levels of expression of type I and type II TGF-beta 1 receptors. Taken together, these results suggest that LMP2A may inhibit TGF-beta 1-mediated apoptosis through activation of the PI3-K/Akt pathway.  相似文献   

19.
Myeloic cells express a peculiar surface receptor for extracellular ATP, called the P2Z/P2X7 purinoreceptor, which is involved in cell death signalling. Here, we investigated the role of caspases, a family of proteases implicated in apoptosis and the cytokine secretion. We observed that extracellular ATP induced the activation of multiple caspases including caspase-1, -3 and -8, and subsequent cleavage of the caspase substrates PARP and lamin B. Using caspase inhibitors, it was found that caspases were specifically involved in ATP-induced apoptotic damage such as chromatin condensation and DNA fragmentation. In contrast, inhibition of caspases only marginally affected necrotic alterations and cell death proceeded normally whether or not nuclear damage was blocked. Our results therefore suggest that the activation of caspases by the P2Z receptor is required for apoptotic but not necrotic alterations of ATP-induced cell death.  相似文献   

20.
To define the role of caspase-3 in H2O2-induced apoptosis, we introduced caspase-3 cDNA into MCF-7 breast carcinoma cells that otherwise lack caspase-3 expression. H2O2 treatment induced DNA fragmentation and nuclear condensation in the caspase-3-expressing cells, but not in the caspase-3-deficient cells. This indicated that caspase-3 is essential for nuclear events. However, H2O2 induced an externalization of membrane phosphatidylserine (PS) and cell death regardless of caspase-3 expression. These events were not suppressed by Ac-DEVD-CHO and Z-VAD-fmk, which inhibit DEVD-specific caspases and a broad spectrum of caspases, respectively. In Jurkat T cells, these inhibitors abolished H2O2-induced PS relocalization, but not cell death. Therefore, caspases appear to be dispensable for lethality by H2O2, but required for PS redistribution in a cell-type-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号