首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While beta-lactam compounds were discovered in filamentous fungi, actinomycetes and gram-negative bacteria are also known to produce different types of beta-lactams. All beta-lactam compounds contain a four-membered beta-lactam ring. The structure of their second ring allows these compounds to be classified into penicillins, cephalosporins, clavams, carbapenens or monobactams. Most beta-lactams inhibits bacterial cell wall biosynthesis but others behave as beta-lactamase inhibitors (e.g., clavulanic acid) and even as antifungal agents (e.g., some clavams). Due to the nature of the second ring in beta-lactam molecules, the precursors and biosynthetic pathways of clavams, carbapenems and monobactams differ from those of penicillins and cephalosporins. These last two groups, including cephamycins and cephabacins, are formed from three precursor amino acids that are linked into the alpha-aminoadipyl-L-cysteinyl-D-valine tripeptide. The first two steps of their biosynthetic pathways are common. The intermediates of these pathways, the characteristics of the enzymes involved, the lack of introns in the genes and bioinformatic analysis suggest that all of them should have evolved from an ancestral gene cluster of bacterial origin, which was surely transferred horizontally in the soil from producer to non-producer microorganisms. The receptor strains acquired fragments of the original bacterial cluster and occasionally inserted new genes into the clusters, which once modified, acquired new functions and gave rise to the final compounds that we know. When the order of genes in the Streptomyces genome is analyzed, the antibiotic gene clusters are highlighted as gene islands in the genome. Nonetheless, the assemblage of the ancestral beta-lactam gene cluster remains a matter of speculation.  相似文献   

2.
A fragment of DNA carrying the hitherto unisolated members of the cluster of genes (red) for biosynthesis of the red-pigmented antibiotic undecylprodigiosin of Streptomyces coelicolor A3(2) was isolated. This was done by cloning random fragments of S. coelicolor DNA into the closely related Streptomyces lividans 66 and recovering a clone that caused overproduction of undecylprodigiosin. The effect was probably due to the presence of the cloned redD gene, which functions as a positive regulator of the expression of the red cluster, activating the normally poorly expressed red genes of S. lividans. Two fragments from either end of the red cluster were cloned adjacent to each other on a low-copy-number Streptomyces vector. Double crossing-over occurring between these plasmid-borne sequences and the chromosomal copy of the same DNA in S. coelicolor led to isolation of the entire red cluster as a single cloned fragment. Isolation of antibiotic biosynthetic genes by the effects of an activator in a self-cloning experiment, and in vivo reconstitution of a large cluster of genes by homologous recombination, may turn out to be usefully generalizable procedures.  相似文献   

3.
Recombinant DNA technology has facilitated a rapid increase in our knowledge of beta-lactam antibiotic biosynthesis. Using the tools of this technology, beta-lactam biosynthetic genes and proteins have been characterized at the molecular level, cephalosporin-C production has been improved, new beta-lactams produced, and novel beta-lactam biosynthetic pathways have been constructed.  相似文献   

4.
A gene (lat) encoding lysine 6-aminotransferase was found upstream of the pcbAB (encoding alpha-aminoadipylcysteinyl-valine synthetase) and pcbC (encoding isopenicillin N synthase) genes in the cluster of early cephamycin biosynthetic genes in Nocardia lactamdurans. The lat gene was separated by a small intergenic region of 64 bp from the 5' end of the pcbAB gene. The lat gene contained an open reading frame of 1,353 nucleotides (71.4% G + C) encoding a protein of 450 amino acids with a deduced molecular mass of 48,811 Da. Expression of DNA fragments carrying the lat gene in Streptomyces lividans led to a high lysine 6-aminotransferase activity which was absent from untransformed S. lividans. The enzyme was partially purified from S. lividans(pULBS8) and showed a molecular mass of 52,800 Da as calculated by Sephadex gel filtration and polyacrylamide gel electrophoresis. DNA sequences which hybridized strongly with the lat gene of N. lactamdurans were found in four cephamycin-producing Streptomyces species but not in four other actinomycetes which are not known to produce beta-lactams, suggesting that the gene is specific for beta-lactam biosynthesis and is not involved in general lysine catabolism. The protein encoded by the lat gene showed similarity to ornithine-5-aminotransferases and N-acetylornithine-5-aminotransferases and contained a pyridoxal phosphate-binding consensus amino acid sequence around Lys-300 of the protein. The evolutionary implications of the lat gene as a true beta-lactam biosynthetic gene are discussed.  相似文献   

5.
Genetic modification of large DNA fragments(gene clusters) is of great importance in synthetic biology and combinatorial biosynthesis as it facilitates rational design and modification of natural products to increase their value and productivity.In this study,we developed a method for scarless and precise modification of large gene clusters by using RecET/RED-mediated polymerase chain reaction(PCR) targeting combined with Gibson assembly.In this strategy,the biosynthetic genes for peptidyl moieties(HPHT) in the nikkomycin biosynthetic gene cluster were replaced with those for carbamoylpolyoxamic acid(CPOAA)from the polyoxin biosynthetic gene cluster to generate a~40 kb hybrid gene cluster in Escherichia coli with a reusable targeting cassette.The reconstructed cluster was introduced into Streptomyces lividans TK23 for heterologous expression and the expected hybrid antibiotic,polynik A,was obtained and verified.This study provides an efficient strategy for gene cluster reconstruction and modification that could be applied in synthetic biology and combinatory biosynthesis to synthesize novel bioactive metabolites or to improve antibiotic production.  相似文献   

6.
The low penicillin-producing, single gene copy strain Wis54-1255 was used to study the effect of overexpressing the penicillin biosynthetic genes in Penicillium chrysogenum. Transformants of Wis54-1255 were obtained with the amdS expression-cassette using the four combinations: pcbAB, pcbC, pcbC-penDE, and pcbAB-pcbC-penDE of the three penicillin biosynthetic genes. Transformants showing an increased penicillin production were investigated during steady-state continuous cultivations with glucose as the growth-limiting substrate. The transformants were characterized with respect to specific penicillin productivity, the activity of the two pathway enzymes delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) and isopenicillin N synthetase (IPNS) and the intracellular concentration of the metabolites: delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), bis-delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (bisACV), isopenicillin N (IPN), glutathione (GSH), and glutathione disulphide (GSSG). Transformants with the whole gene cluster amplified showed the largest increase in specific penicillin productivity (r(p))-124% and 176%, respectively, whereas transformation with the pcbC-penDE gene fragment resulted in a decrease in r(p) of 9% relative to Wis54-1255. A marked increase in r(p) is clearly correlated with a balanced amplification of both the ACVS and IPNS activity or a large amplification of either enzyme activity. The increased capacity of a single enzyme occurs surprisingly only in the transformants where all the three biosynthetic genes are overexpressed but is not found within the group of pcbAB or pcbC transformants. The indication of the pcbAB and pcbC genes being closely regulated in fungi might explain why high-yielding strains of P. chrysogenum have been found to contain amplifications of a large region including the whole penicillin gene cluster and not single gene amplifications. Measurements of the total ACV concentration showed a large span of variability, which reflected the individual status of enzyme overexpression and activity found in each strain. The ratio ACV:bisACV remained constant, also at high ACV concentrations, indicating no limitation in the capacity of the thioredoxin-thioredoxin reductase (TR) system, which is assumed to keep the pathway intermediate LLD-ACV in its reduced state. The total GSH pool was at a constant level of approx. 5.7 mM in all cultivations.  相似文献   

7.
Clavicipitaceous fungal endophytes of the genera Epichlo? and Neotyphodium form symbioses with grasses of the subfamily Pooideae, in which they can synthesize an array of bioprotective alkaloids. Some strains produce the ergopeptine alkaloid ergovaline, which is implicated in livestock toxicoses caused by ingestion of endophyte-infected grasses. Cloning and analysis of a nonribosomal peptide synthetase (NRPS) gene from Neotyphodium lolii revealed a putative gene cluster for ergovaline biosynthesis containing a single-module NRPS gene, lpsB, and other genes orthologous to genes in the ergopeptine gene cluster of Claviceps purpurea and the clavine cluster of Aspergillus fumigatus. Despite conservation of gene sequence, gene order is substantially different between the N. lolii, C. purpurea, and A. fumigatus ergot alkaloid gene clusters. Southern analysis indicated that the N. lolii cluster was linked with previously identified ergovaline biosynthetic genes dmaW and lpsA. The ergovaline genes are closely associated with transposon relics, including retrotransposons and autonomous and nonautonomous DNA transposons. All genes in the cluster were highly expressed in planta, but expression was very low or undetectable in mycelia from axenic culture. This work provides a genetic foundation for elucidating biochemical steps in the ergovaline pathway, the ecological role of individual ergot alkaloid compounds, and the regulation of their synthesis in planta.  相似文献   

8.
Oxazolomycin (OZM), a hybrid peptide-polyketide antibiotic, exhibits potent antitumor and antiviral activities. Using degenerate primers to clone genes encoding methoxymalonyl-acyl carrier protein (ACP) biosynthesis as probes, a 135-kb DNA region from Streptomyces albus JA3453 was cloned and found to cover the entire OZM biosynthetic gene cluster. The involvement of the cloned genes in OZM biosynthesis was confirmed by deletion of a 12-kb DNA fragment containing six genes for methoxymalonyl-ACP biosynthesis from the specific region of the chromosome, as well as deletion of the ozmC gene within this region, to generate OZM-nonproducing mutants.  相似文献   

9.
Summary We have isolated and studied the organization ofStreptomyces hygroscopicus genes responsible for the biosynthesis of the antibiotic herbicide bialaphos. Bialaphos production genes were cloned from genomic DNA using a plasmid vector (pIJ702). Three plasmids were isolated which restored productivity toS. hygroscopicus mutants blocked at different steps of the biosynthetic pathway. Subcloning experiments using other nonproducing mutants showed that four additional bialaphos production genes were also contained on these plasmids. A gene conferring resistance to bialaphos, which was independently cloned using the plasmid vector pIJ61, and an antibiotic-sensitive host (S. lividans), was also linked to the production genes. Cosmids were isolated which defined the location of these genes in a 16 kb cluster.  相似文献   

10.
A 34 kb fragment of the Nocardia lactamdurans DNA carrying the cluster of early cephamycin biosynthetic genes was cloned in lambda EMBL3 by hybridization with probes internal to the pcbAB and pcbC genes of Penicillium chrysogenum and Streptomyces griseus. The pcbAB and pcbC genes were found to be closely linked together in the genome of N. lactamdurans. The pcbAB gene of N. lactamdurans showed the same orientation as the pcbC gene, in contrast to the divergent expression of the genes in the pcbAB-pcbC cluster of P. chrysogenum and Acremonium chrysogenum. The pcbAB gene encodes a large (3649 amino acids) multidomain delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase with a deduced Mr of 404,134. This enzyme contains three repeated domains and a consensus thioesterase active-site sequence. The pcbC gene encodes a protein of 328 amino acids with a deduced Mr of 37,469, which is similar to other isopenicillin N synthases except that it lacks one of two cysteine residues conserved in all other isopenicillin N synthases. The different organization of the pcbAB-pcbC gene cluster in N. lactamadurans and Streptomyces clavuligerus relative to P. chrysogenum and A. chrysogenum is intriguing in relation to the hypothesis of horizontal transference of these genes from actinomycetes to filamentous fungi by a single transfer event.  相似文献   

11.
The biologically inactive compound N-acetylpuromycin is the last intermediate of the puromycin antibiotic biosynthetic pathway in Streptomyces alboniger. Culture filtrates from either this organism or Streptomyces lividans transformants harboring the puromycin biosynthetic gene cluster cloned in low-copy-number cosmids contained an enzymic activity which hydrolyzes N-acetylpuromycin to produce the active antibiotic. A gene encoding the deacetylase enzyme was located at one end of this cluster, subcloned in a 2.5-kb DNA fragment, and expressed from a high-copy-number plasmid in S. lividans.  相似文献   

12.
Zwittermicin A biosynthetic cluster.   总被引:7,自引:0,他引:7  
E A Stohl  J L Milner  J Handelsman 《Gene》1999,237(2):403-411
The goal of this study was to identify the biosynthetic cluster for zwittermicin A, a novel, broad spectrum, aminopolyol antibiotic produced by Bacillus cereus. The nucleotide sequence of 2.7kb of DNA flanking the zwittermicin A self-resistance gene, zmaR, from B. cereus UW85 revealed three open reading frames (ORFs). Of these ORFs, two had sequence similarity to acyl-CoA dehydrogenases and polyketide synthases, respectively. Insertional inactivation demonstrated that orf2 is necessary for zwittermicin A production and that zmaR is necessary for high-level resistance to zwittermicin A but is not required for zwittermicin A production. Expression of ZmaR was temporally associated with zwittermicin A production. The results suggest that zmaR is part of a cluster of genes that is involved in zwittermicin A biosynthesis, representing the first biosynthetic pathway for an aminopolyol antibiotic.  相似文献   

13.
14.
The GE81112 tetrapeptides (1–3) represent a structurally unique class of antibiotics, acting as specific inhibitors of prokaryotic protein synthesis. Here we report the cloning and sequencing of the GE81112 biosynthetic gene cluster from Streptomyces sp. L-49973 and the development of a genetic manipulation system for Streptomyces sp. L-49973. The biosynthetic gene cluster for the tetrapeptide antibiotic GE81112 (getA-N) was identified within a 61.7-kb region comprising 29 open reading frames (open reading frames), 14 of which were assigned to the biosynthetic gene cluster. Sequence analysis revealed the GE81112 cluster to consist of six nonribosomal peptide synthetase (NRPS) genes encoding incomplete di-domain NRPS modules and a single free standing NRPS domain as well as genes encoding other biosynthetic and modifying proteins. The involvement of the cloned gene cluster in GE81112 biosynthesis was confirmed by inactivating the NRPS gene getE resulting in a GE81112 production abolished mutant. In addition, we characterized the NRPS A-domains from the pathway by expression in Escherichia coli and in vitro enzymatic assays. The previously unknown stereochemistry of most chiral centers in GE81112 was established from a combined chemical and biosynthetic approach. Taken together, these findings have allowed us to propose a rational model for GE81112 biosynthesis. The results further open the door to developing new derivatives of these promising antibiotic compounds by genetic engineering.  相似文献   

15.
Lysine epsilon-aminotransferase (LAT) in the beta-lactam-producing actinomycetes is considered to be the first step in the antibiotic biosynthetic pathway. Cloning of restriction fragments from Streptomyces clavuligerus, a beta-lactam producer, into Streptomyces lividans, a nonproducer that lacks LAT activity, led to the production of LAT in the host. DNA sequencing of restriction fragments containing the putative lat gene revealed a single open reading frame encoding a polypeptide with an approximately Mr 49,000. Expression of this coding sequence in Escherichia coli led to the production of LAT activity. Hence, LAT activity in S. clavuligerus is derived from a single polypeptide. A second open reading frame began immediately downstream from lat. Comparison of this partial sequence with the sequences of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D valine (ACV) synthetases from Penicillium chrysogenum and Cephalosporium acremonium and with nonribosomal peptide synthetases (gramicidin S and tyrocidine synthetases) found similarities among the open reading frames. Since mapping of the putative N and C termini of S. clavuligerus pcbAB suggests that the coding region occupies approximately 12 kbp and codes for a polypeptide related in size to the fungal ACV synthetases, the molecular characterization of the beta-lactam biosynthetic cluster between pcbC and cefE (approximately 25 kbp) is nearly complete.  相似文献   

16.
Many Streptomyces strains are known to produce valinomycin (VLM) antibiotic and the VLM biosynthetic gene cluster (vlm) has been characterized in two independent isolates. Here we report the phylogenetic relationships of these strains using both parsimony and likelihood methods, and discuss whether the vlm gene cluster shows evidence of horizontal transmission common in natural product biosynthetic genes. Eight Streptomyces strains from around the world were obtained and sequenced for three regions of the two large nonribosomal peptide synthetase genes (vlm1 and vlm2) involved in VLM biosynthesis. The DNA sequences representing the vlm gene cluster are highly conserved among all eight environmental strains. The geographic distribution pattern of these strains and the strict congruence between the trees of the two vlm genes and the housekeeping genes, 16S rDNA and trpB, suggest vertical transmission of the vlm gene cluster in Streptomyces with no evidence of horizontal gene transfer. We also explored the relationship of the sequence of vlm genes to that of the cereulide biosynthetic genes (ces) found in Bacillus cereus and found them highly divergent from each other at DNA level (genetic distance values≥95.6%). It is possible that the vlm gene cluster and the ces gene cluster may share a relatively distant common ancestor but these two gene clusters have since evolved independently.  相似文献   

17.
18.
The biosynthetic gene cluster for the polyene antifungal antibiotic, 2'-O-methylmyxalamide D, was cloned from myxobacterium Cystobacter fuscus AJ-13278. A sequence analysis of the 12.8-kb region in the gene cluster revealed the presence of two type I polyketide synthase genes, mmxB and mmxC. The involvement of these two genes in the biosynthesis of 2'-O-methylmyxalamide D was confirmed by a gene disruption experiments. In addition, an S-adenosylmethionine-dependent methyltransferase gene (mmxM) was found downstream of the gene cluster and demonstrated, by a gene disruption analysis, to be responsible for converting the known unmethylated precursor, myxalamide D, into 2'-O-methylmyxalamide D.  相似文献   

19.
Summary The isolation of mutants of Streptomyces rimosus which were blocked in oxytetracycline (OTC) production was described previously. The genes for the early steps of antibiotic biosynthesis mapped together. Genomic DNA fragments of S. rimosus which conferred resistance to OTC and complemented all of these non-producing mutants have been cloned. The cloned DNA is physically linked within approximately 30 kb of the genome of S. rimosus. The gene cluster is flanked at each end by a resistance gene each of which, independently, can confer resistance to the antibiotic. In OTC-sensitive strains of S. rimosus, the entire gene cluster including both resistance genes has been deleted. Complementation of blocked mutants by cloned DNA fragments in multi-copy vectors was often masked by a secondary effect of switching off antibiotic productions in strains othersise competent to produce OTC. This adverse effect on OTC production was not observed with recombinants using low copy-number vectors.  相似文献   

20.
Ca(2+)-dependent cyclic lipodepsipeptides are an emerging class of antibiotics for the treatment of infections caused by Gram-positive pathogens. These compounds are synthesized by nonribosomal peptide synthetase (NRPS) complexes encoded by large gene clusters. The gene cluster encoding biosynthetic pathway enzymes for the Streptomyces fradiae A54145 NRP was cloned from a cosmid library and characterized. Four NRPS-encoding genes, responsible for subunits of the synthetase, as well as genes for accessory functions such as acylation, methylation and hydroxylation, were identified by sequence analysis in a 127 kb region of DNA that appears to be located subterminally in the bacterial chromosome. Deduced epimerase domain-encoding sequences within the NRPS genes indicated a D: -stereochemistry for Glu, Lys and Asn residues, as observed for positionally analogous residues in two related compounds, daptomycin, and the calcium-dependent antibiotic (CDA) produced by Streptomyces roseosporus and Streptomyces coelicolor, respectively. A comparison of the structure and the biosynthetic gene cluster of A54145 with those of the related peptides showed many similarities. This information may contribute to the design of experiments to address both fundamental and applied questions in lipopeptide biosynthesis, engineering and drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号