首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new set of 5-(2-(pyrrolidin-1-yl)acetamido)-N-butyl-2-(substituted)benzamide and 5-(2-(piperidin-1-yl)acetamido)-N-butyl-2-(substituted) benzamide derivatives were synthesized in which as structural features the 2-(1-pyrrolidinyl)- or 2-(1-piperidyl)acetylamino group or a diphenylether moiety are associated to a benzamide scaffold. Their binding affinity for human PrP(C) and inhibition of its conversion into PrP(Sc) were determined in vitro; moreover, the antiprion activity was assayed by inhibition of PrP(Sc) accumulation in scrapie-infected mouse neuroblastoma cells (ScN2a) and scrapie mouse brain (SMB) cells. The results clearly indicate the benzamide derivatives as attractive lead compounds for the development of potential therapeutic agents against prion disease.  相似文献   

2.
Geldanamycin restores a defective heat shock response in vivo   总被引:5,自引:0,他引:5  
Induced expression of heat shock proteins (Hsps) plays a central role in promoting cellular survival after environmental and physiological stress. We have previously shown that scrapie-infected mouse neuroblastoma (ScN2a) cells fail to induce the expression of Hsp72 and Hsp28 after various stress conditions. Here we present evidence that this impaired stress response is due to an altered regulation of HSF1 activity. Upon stress in ScN2a cells, HSF1 was converted into hyperphosphorylated trimers but failed to acquire transactivation competence. A kinetic analysis of HSF1 activation revealed that in ScN2a cells trimer formation after stress was efficient, but disassembly of trimers proceeded much faster than in the uninfected cell line. Geldanamycin, a Hsp90-binding drug, significantly delayed disassembly of HSF1 trimers after a heat shock and restored stress-induced expression of Hsp72 in ScN2a cells. Heat-induced Hsp72 expression required geldanamycin to be present; following removal of the drug ScN2a cells again lost their ability to mount a stress response. Thus, our studies show that a defective stress response can be pharmacologically restored and suggest that the HSF1 deactivation pathway may play an important role in the regulation of Hsp expression.  相似文献   

3.
The prion agent has been detected in skeletal muscle of humans and animals with prion diseases. Here we report scrapie infection of murine C2C12 myoblasts and myotubes in vitro following coculture with a scrapie-infected murine neuroblastoma (N2A) cell line but not following incubation with a scrapie-infected nonneuronal cell line or a scrapie brain homogenate. Terminal differentiation of scrapie-infected C2C12 myoblasts into myotubes resulted in an increase in the expression of the disease-specific prion protein, PrP(Sc). The amount of scrapie infectivity or PrP(Sc) in C2C12 myotubes was comparable to the levels found in scrapie-infected N2A cells, indicating that a high level of infection was established in muscle cells. Subclones of scrapie-infected C2C12 cells produced high levels of PrP(Sc) in myotubes, and the C-terminal C2 polypeptide fragment of PrP(Sc) was found based on deglycosylation and PrP(Sc)-specific immunoprecipitation of cell lysates. This is the first report of a stable prion infection in muscle cells in vitro and of a long-term prion infection in a nondividing, differentiated peripheral cell type in culture. These in vitro studies also suggest that in vivo prion infection of skeletal muscle requires contact with prion-infected neurons or, possibly, nerve terminals.  相似文献   

4.
The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.  相似文献   

5.
Transmissible spongiform encephalopathies (TSEs) are fatal, untreatable neurodegenerative diseases associated with the accumulation of a disease-specific form of prion protein (PrP) in the brain. One approach to TSE therapeutics is the inhibition of PrP accumulation. Indeed, many inhibitors of the accumulation of PrP associated with scrapie (PrP(Sc)) in scrapie-infected mouse neuroblastoma cells (ScN(2)a) also have antiscrapie activity in rodents. To expedite the search for potential TSE therapeutic agents, we have developed a high-throughput screening assay for PrP(Sc) inhibitors using ScN(2)a cells in a 96-well format. A library of 2000 drugs and natural products was screened in ScN(2)a cells infected with scrapie strain RML (Chandler) or 22L. Forty compounds were found to have concentrations causing 50% inhibition (IC(50)s) of PrP(Sc) accumulation of 相似文献   

6.
Chimeric insulin/insulin-like growth factor-1 receptors and insulin receptor alpha-subunit point mutants were characterized with respect to their binding properties for insulin and insulin-like growth factor-1 (IGF-1) and their ability to translate ligand interaction into tyrosine kinase activation in intact cells. We found that replacement of the amino-terminal 137 amino acids of the insulin receptor (IR) with the corresponding 131 amino acids of the IGF-1 receptor (IGF-1R) resulted in loss of affinity for both ligands. Further replacement of the adjacent cysteine region with IGF-1R sequences fully reconstituted affinity for IGF-1, but only marginally for insulin. Unexpectedly, replacement of the IR cysteine-rich domain alone by IGF-1R sequences created a high affinity receptor for both insulin and IGF-1. The binding characteristics of all receptor chimeras reflected the potential of both ligands to regulate the receptor tyrosine kinase activity in intact cells. Our chimeric receptor data, in conjunction with IR amino-terminal domain point mutants, strongly suggest major contributions of structural determinants in both amino- and carboxyl-terminal IR alpha-subunit regions for the formation of the insulin-binding pocket, whereas, surprisingly, the residues defining IGF-1 binding are present predominantly in the cysteine-rich domain of the IGF-1R.  相似文献   

7.
To investigate the roles of insulin receptor substrate 3 (IRS-3) and IRS-4 in the insulin-like growth factor 1 (IGF-1) signaling cascade, we introduced these proteins into 3T3 embryonic fibroblast cell lines prepared from wild-type (WT) and IRS-1 knockout (KO) mice by using a retroviral system. Following transduction of IRS-3 or IRS-4, the cells showed a significant decrease in IRS-2 mRNA and protein levels without any change in the IRS-1 protein level. In these cell lines, IGF-1 caused the rapid tyrosine phosphorylation of all four IRS proteins. However, IRS-3- or IRS-4-expressing cells also showed a marked decrease in IRS-1 and IRS-2 phosphorylation compared to the host cells. This decrease was accounted for in part by a decrease in the level of IRS-2 protein but occurred with no significant change in the IRS-1 protein level. IRS-3- or IRS-4-overexpressing cells showed an increase in basal phosphatidylinositol 3-kinase activity and basal Akt phosphorylation, while the IGF-1-stimulated levels correlated well with total tyrosine phosphorylation level of all IRS proteins in each cell line. IRS-3 expression in WT cells also caused an increase in IGF-1-induced mitogen-activated protein kinase phosphorylation and egr-1 expression ( approximately 1.8- and approximately 2.4-fold with respect to WT). In the IRS-1 KO cells, the impaired mitogenic response to IGF-1 was reconstituted with IRS-1 to supranormal levels and was returned to almost normal by IRS-2 or IRS-3 but was not improved by overexpression of IRS-4. These data suggest that IRS-3 and IRS-4 may act as negative regulators of the IGF-1 signaling pathway by suppressing the function of other IRS proteins at several steps.  相似文献   

8.
Sphingolipid-rich rafts play an essential role in the posttranslational (Borchelt, D. R., Scott, M., Taraboulos, A., Stahl, N., and Prusiner, S. B. (1990) J. Cell Biol. 110, 743-752)) formation of the scrapie prion protein PrP(Sc) from its normal conformer PrP(C) (Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., Prusiner, S. B., and Avraham, D. (1995) J. Cell Biol. 129, 121-132). We investigated the importance of sphingolipids in the metabolism of the PrP isoforms in scrapie-infected ScN2a cells. The ceramide synthase inhibitor fumonisin B(1) (FB(1)) reduced both sphingomyelin (SM) and ganglioside GM1 in cells by up to 50%, whereas PrP(Sc) increased by 3-4-fold. Whereas FB(1) profoundly altered the cell lipid composition, the raft residents PrP(C), PrP(Sc), caveolin 1, and GM1 remained insoluble in Triton X-100. Metabolic radiolabeling demonstrated that PrP(C) production was either unchanged or slightly reduced in FB(1)-treated cells, whereas PrP(Sc) formation was augmented by 3-4-fold. To identify the sphingolipid species the decrease of which correlates with increased PrP(Sc), we used two other reagents. When cells were incubated with sphingomyelinase for 3 days, SM levels decreased, GM1 was unaltered, and PrP(Sc) increased by 3-4-fold. In contrast, the glycosphingolipid inhibitor PDMP reduced PrP(Sc) while increasing SM. Thus, PrP(Sc) seems to correlate inversely with SM levels. The effects of SM depletion contrasted with those previously obtained with the cholesterol inhibitor lovastatin, which reduced PrP(Sc) and removed it from detergent-insoluble complexes.  相似文献   

9.
In this study we provide evidence that the low expression of IGF-1R at the cell surface of estrogen-independent breast cancer cells is due to a low rate of de novo synthesis of dolichyl phosphate. The analyses were performed on the estrogen receptor-negative breast cancer cell line MDA231 and, in comparison, the melanoma cell line SK-MEL-2, which expresses a high number of plasma membrane-bound IGF-1R. Whereas the MDA231 cells had little or no surface expression of IGF-1R, they expressed functional (i.e., ligand-binding) intracellular receptors. By measuring the incorporation of [3H]mevalonate into dolichyl phosphate, we could demonstrate that the rate of dolichyl phosphate synthesis was considerably lower in MDA231 cells than in SK-MEL-2 cells. Furthermore, N-linked glycosylation of the alpha-subunit of IGF-1R was 8-fold higher in the melanoma cells. Following addition of dolichyl phosphate to MDA231 cells, N-linked glycosylation of IGF-1R was drastically increased, which in turn was correlated to a substantial translocation of IGF-1R to the plasma membrane, as assayed by IGF-1 binding analysis and by Western blotting of plasma membrane proteins. The dolichyl phosphate-stimulated receptors were proven to be biochemically active since they exhibited autophosphorylation. Under normal conditions MDA231 cells, expressing very few IGF-1R at the cell surface, were not growth-arrested by an antibody (alphaIR-3) blocking the binding of IGF-1 to IGF-1R. However, after treatment with dolichyl phosphate, leading to a high cell surface expression of IGF-1R, alphaIR-3 efficiently blocked MDA231 cell growth. Taken together with the fact that the breast cancer cells produce IGF-1 and exhibit intracellular binding, our data suggest that the level of de novo -synthesized dolichyl phosphate may be critical for whether the cells will use an intracellular or an extracellular autocrine IGF-1 pathway.  相似文献   

10.
11.
Branched polyamines cure prion-infected neuroblastoma cells   总被引:7,自引:0,他引:7       下载免费PDF全文
Branched polyamines, including polyamidoamine and polypropyleneimine (PPI) dendrimers, are able to purge PrP(Sc), the disease-causing isoform of the prion protein, from scrapie-infected neuroblastoma (ScN2a) cells in culture (S. Supattapone, H.-O. B. Nguyen, F. E. Cohen, S. B. Prusiner, and M. R. Scott, Proc. Natl. Acad. Sci. USA 96:14529-14534, 1999). We now demonstrate that exposure of ScN2a cells to 3 microg of PPI generation 4.0/ml for 4 weeks not only reduced PrP(Sc) to a level undetectable by Western blot but also eradicated prion infectivity as determined by a bioassay in mice. Exposure of purified RML prions to branched polyamines in vitro disaggregated the prion rods, reduced the beta-sheet content of PrP 27-30, and rendered PrP 27-30 susceptible to proteolysis. The susceptibility of PrP(Sc) to proteolytic digestion induced by branched polyamines in vitro was strain dependent. Notably, PrP(Sc) from bovine spongiform encephalopathy-infected brain was susceptible to PPI-mediated denaturation in vitro, whereas PrP(Sc) from natural sheep scrapie-infected brain was resistant. Fluorescein-labeled PPI accumulated specifically in lysosomes, suggesting that branched polyamines act within this acidic compartment to mediate PrP(Sc) clearance. Branched polyamines are the first class of compounds shown to cure prion infection in living cells and may prove useful as therapeutic, disinfecting, and strain-typing reagents for prion diseases.  相似文献   

12.
Congo red inhibition of scrapie agent replication.   总被引:11,自引:7,他引:4       下载免费PDF全文
B Caughey  D Ernst    R E Race 《Journal of virology》1993,67(10):6270-6272
Congo red inhibits the accumulation of protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. Here we show that Congo red also inhibits the replication of scrapie infectivity in these cells. This observation is consistent with the idea that protease-resistant PrP is a vital component of the scrapie agent or that agent replication depends on the presence of protease-resistant PrP in the cell.  相似文献   

13.
The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines.  相似文献   

14.
Propagation of the agents responsible for transmissible spongiform encephalopathies (TSEs) in cultured cells has been achieved for only a few cell lines. To establish efficient and versatile models for transmission, we developed neuroblastoma cell lines overexpressing type A mouse prion protein, MoPrP(C)-A, and then tested the susceptibility of the cells to several different mouse-adapted scrapie strains. The transfected cell clones expressed up to sixfold-higher levels of PrP(C) than the untransfected cells. Even after 30 passages, we were able to detect an abnormal proteinase K-resistant form of prion protein, PrP(Sc), in the agent-inoculated PrP-overexpressing cells, while no PrP(Sc) was detectable in the untransfected cells after 3 passages. Production of PrP(Sc) in these cells was also higher and more stable than that seen in scrapie-infected neuroblastoma cells (ScN2a). The transfected cells were susceptible to PrP(Sc)-A strains Chandler, 139A, and 22L but not to PrP(Sc)-B strains 87V and 22A. We further demonstrate the successful transmission of PrP(Sc) from infected cells to other uninfected cells. Our results corroborate the hypothesis that the successful transmission of agents ex vivo depends on both expression levels of host PrP(C) and the sequence of PrP(Sc). This new ex vivo transmission model will facilitate research into the mechanism of host-agent interactions, such as the species barrier and strain diversity, and provides a basis for the development of highly susceptible cell lines that could be used in diagnostic and therapeutic approaches to the TSEs.  相似文献   

15.
Neurodegenerative diseases are typically associated with an activation of glia and an increased level of cytokines. In our previous studies of prion disease, the cytokine response in the brains of clinically sick scrapie-infected mice was restricted to a small group of cytokines, of which IL-12p40, CCL2, and CXCL10 were present at the highest levels. The goal of our current research was to determine the relationship between cytokine responses, gliosis, and neuropathology during prion disease. Here, in time course studies of C57BL/10 mice intracerebrally inoculated with 22L scrapie, abnormal protease-resistant prion protein (PrPres), astrogliosis, and microgliosis were first detected at 40 days after intracerebral scrapie inoculation. In cytokine studies, IL-12p40 was first elevated by 60 days; CCL3, IL-1β, and CXCL1 were elevated by 80 days; and CCL2 and CCL5 were elevated by 115 days. IL-12p40 showed the most extensive increase throughout disease and was 30-fold above control levels at the terminal stage. Because of the early onset and dramatic elevation of IL-12p40 during scrapie, we investigated whether IL-12p40 contributed to the development of prion disease neuropathogenesis by using three different scrapie strains (22L, RML, 79A) to infect knockout mice in which the gene encoding IL-12p40 was deleted. We also studied knockout mice lacking IL-12p35, which combines with IL-12p40 to form active IL-12 heterodimers. In all instances, knockout mice did not differ from control mice in survival time, clinical tempo, or levels of spongiosis, gliosis, or PrPres in the brain. Thus, neither IL-12p40 nor IL-12p35 molecules were required for prion disease-associated neurodegeneration or neuroinflammation.  相似文献   

16.
17.
The efficient expression of exogenous prion protein (PrP) molecules in mouse neuroblastoma cells that are chronically infected with murine scrapie prions (ScN2a cells; Butler, D.A., et al., 1988, J. Virol. 62, 1558-1564) and in transgenic mice is described. This technology allows investigation of the PrP molecule for structural regions involved in determining species specificity, as well as ablation experiments designed to address the functionality of particular regions of the PrP molecule. Previous reports demonstrated that the PrP gene specifies the host range for susceptibility of transgenic animals to prions (Scott, M., et al., 1989, Cell 59, 847-857; Prusiner, S.B., et al., 1990, Cell 63, 673-686). Consistent with these results, we showed that Syrian hamster (SHa) PrP is ineligible for efficient conversion to PrPSc in ScN2a cells. By constructing a series of chimeric mouse (Mo)/SHaPrP genes, we developed an epitopically tagged functional variant of the MoPrP gene, which can efficiently form protease-resistant PrP molecules upon expression in ScN2a cells. The presence of a defined epitope for an SHa-specific monoclonal antibody allows the products of this chimeric gene to be discriminated from endogenous MoPrP and creates a useful reagent for exploring structure/function relationships via targeted mutagenesis. In addition, we developed a transgenic mouse expression vector by manipulation of an SHaPrP cosmid clone. This vector permits the efficient expression of foreign PrP genes in the brains of transgenic animals, enabling pathological consequences of in vitro mutagenesis to be studied.  相似文献   

18.
Numerous studies have indicated that a modified proteinase K-resistant form of an endogenous brain protein, prion protein (PrP), is associated with scrapie infection in animals. This scrapie-associated PrP modification appears to occur posttranslationally in brain, but its molecular nature is not known. To learn about the normal PrP biosynthesis and whether it is altered by scrapie infection in vitro, we did metabolic labeling experiments with uninfected and scrapie-infected mouse neuroblastoma tissue culture cells. Pulse-chase labeling experiments indicated that, in both cell types, two major PrP precursors of 28 and 33 kilodaltons (kDa) were processed to mature 30- and 35- to 41-kDa forms. Endoglycosidase H, tunicamycin, and phospholipase treatments revealed that the 28- and 33-kDa precursors resulted from the addition of high-mannose glycans to a 25-kDa polypeptide containing a phosphatidylinositol moiety and that maturation of the precursors involved the conversion of the high-mannose glycans to hybrid or complex glycans. Treatments of the live cells with trypsin and phosphatidylinositol-specific phospholipase C indicated that the mature PrP species were expressed solely on the cell surface, where they were anchored by covalent linkage to phosphatidylinositol. Once on the cell surface, the major PrP forms had half-lives of 3 to 6 h. No differences in PrP biosynthesis were observed between the scrapie-infected versus uninfected neuroblastoma cells.  相似文献   

19.
Scrapie and Creutzfeldt-Jakob disease are transmissible, degenerative neurological diseases caused by prions. Considerable evidence argues that prions contain protease-resistant sialoglycoproteins, designated PrPSc, encoded by a cellular gene. The prion protein (PrP) gene also encodes a normal cellular protein designated PrPC. We established clonal cell lines which support the replication of mouse scrapie or Creutzfeldt-Jakob disease prions. Mouse neuroblastoma N2a cells were exposed to mouse scrapie prions and subsequently cloned. After limited proteinase K digestion, three PrP-immunoreactive proteins with apparent molecular masses ranging between 20 and 30 kilodaltons were detected in extracts of scrapie-infected N2a cells by Western (immuno-) blotting. The authenticity of these PrPSc molecules was established by using monospecific antiserum raised against a synthetic peptide corresponding to a portion of the prion protein. Those clones synthesizing PrPSc molecules possessed scrapie prion infectivity as measured by bioassay; clones without PrPSc failed to demonstrate infectivity. Detection of PrPSc molecules in scrapie-infected N2a cells supports the contention that PrPSc is a component of the infectious scrapie particle and opens new approaches to the study of prion diseases.  相似文献   

20.
Riemer C  Queck I  Simon D  Kurth R  Baier M 《Journal of virology》2000,74(21):10245-10248
The pathogenesis of scrapie, and of neurodegenerative diseases in general, is still insufficiently understood and is therefore being intensely researched. There is abundant evidence that the activation of glial cells precedes neurodegeneration and may thus play an important role in disease development and progression. The identification of genes with altered expression patterns in the diseased brain may provide insight on the molecular level into the process which ultimately leads to neuronal loss. Differentially expressed genes in scrapie-infected brain tissue were enriched by the suppression subtractive hybridization technique, molecularly cloned, and further characterized. Northern blotting and nucleotide sequencing confirmed the identities of 19 upregulated genes, 11 of which were unknown to be affected by scrapie. A considerable number of these 19 genes, namely those encoding interferon-inducible protein 10 (IP-10), 2',5'-oligo(A) synthetase, Mx protein, IIGP protein, major histocompatibility complex classes I and II, complement, and beta(2)-microglobulin, were inducible by interferons (IFNs), suggesting that an IFN response is a possible mechanism of gene activation in scrapie. Among the newly found genes, that coding for 2',5'-oligo(A) synthetase is of special interest because it could contribute to the apoptotic loss of neuronal cells via RNase L activation. In addition, upregulation of the chemokine IP-10 and B-lymphocyte chemoattractant mRNAs was seen at relatively early stages of the disease and was sustained throughout disease development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号