共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Despite the strong influence of pollination ecology on the evolution of selfing, we have little information on how distinct groups of insect pollinators influence outcrossing rate. However, differences in behavior between pollinator groups could easily influence how each group affects outcrossing rate. We examined the influence of distinct insect pollinator groups on outcrossing rate in the rocky mountain columbine, Aquilegia coerulea. The impact of population size, plant density, size of floral display, and herkogamy (spatial separation between anthers and stigmas) on outcrossing rate was also considered as these variables were previously found to affect outcrossing rate in some plant species. We quantified correlations between all independent variables and used simple and two-factor regressions to determine direct and indirect impact of each independent variable on outcrossing rate. Outcrossing rate increased significantly with hawkmoth abundance but not with the abundance of any of the other groups of floral visitors, which included bumblebees, solitary bees, syrphid flies, and muscidae. Outcrossing rate was also significantly affected by floral display size and together, hawkmoth abundance and floral display size explained 87% of the variation in outcrossing rate. None of the other independent variables directly affected the outcrossing rate. This is the first report of a significant impact of pollinator type on outcrossing rate. Hawkmoths did not visit fewer flowers per plant relative to other pollinator groups but preferred visiting female-phase flowers first on a plant. Both the behavior of pollinators and floral display size affected outcrossing rate via their impact on the level of geitonogamous (among flower) selfing. Given that geitonogamous selfing is never advantageous, the variation in outcrossing rate and maintenance of mixed mating systems in populations of A. coerulea may not require an adaptive explanation. 相似文献
3.
4.
5.
6.
Background and Aims
The number of flowers blooming simultaneously on a plant may have profound consequences for reproductive success. Large floral displays often attract more pollinator visits, increasing outcross pollen receipt. However, pollinators frequently probe more flowers in sequence on large displays, potentially increasing self-pollination and reducing pollen export per flower. To better understand how floral display size influences male and female fitness, we manipulated display phenotypes and then used paternity analysis to quantify siring success and selfing rates.Methods
To facilitate unambiguous assignment of paternity, we established four replicate (cloned) arrays of Mimulus ringens, each consisting of genets with unique combinations of homozygous marker genotypes. In each array, we trimmed displays to two, four, eight or 16 flowers. When fruits ripened, we counted the number of seeds per fruit and assigned paternity to 1935 progeny.Key Results
Siring success per flower declined sharply with increasing display size, while female success per flower did not vary with display. The rate of self-fertilization increased for large floral displays, but siring losses due to geitonogamous pollen discounting were much greater than siring gains through increased self-fertilization. As display size increased, each additional seed sired through geitonogamous self-pollination was associated with a loss of 9·7 seeds sired through outcrossing.Conclusions
Although total fitness increased with floral display size, the marginal return on each additional flower declined steadily as display size increased. Therefore, a plant could maximize fitness by producing small displays over a long flowering period, rather than large displays over a brief flowering period. 相似文献7.
8.
Habitat assessment ability of bumble-bees implies frequency-dependent selection on floral rewards and display size 总被引:1,自引:0,他引:1
Biernaskie JM Gegear RJ 《Proceedings. Biological sciences / The Royal Society》2007,274(1625):2595-2601
Foraging pollinators could visit hundreds of flowers in succession on mass-flowering plants, yet they often visit only a small number--potentially saving the plant from much self-pollination among its own flowers (geitonogamy). This study tests the hypothesis that bumble-bee (Bombus impatiens) residence on a particular plant depends on an assessment of that plant's reward value relative to the overall quality experienced in the habitat. In a controlled environment, naive bees were given experience in a particular habitat (all plants having equal nectar quality or number of rewarding flowers), and we tested whether they learn about and adaptively exploit a new habitat type. Bees' residence on a plant (number of flowers probed per visit) was eventually invariant to a doubling of absolute nectar quality and increased only slightly with a doubling of absolute flower number in the habitat. These results help to explain why pollinators are quick to leave highly rewarding plants and suggest that the fitness of rewarding plant traits will often be frequency dependent. One implication is that geitonogamy may be a less significant constraint on the evolution of rewarding traits than generally supposed. 相似文献
9.
The effect of protandry on siring success in Chamerion angustifolium (Onagraceae) with different inflorescence sizes 总被引:1,自引:0,他引:1
Abstract Protandry, a form of temporal separation of gender within hermaphroditic flowers, may reduce the magnitude of pollen lost to selfing (pollen discounting) and also serve to enhance pollen export and outcross siring success. Because pollen discounting is strongest when selfing occurs between flowers on the same plant, the advantage of protandry may be greatest in plants with large floral displays. We tested this hypothesis with enclosed, artificial populations of Chamerion angustifolium (Onagraceae) by experimentally manipulating protandry (producing uniformly adichogamous or mixed protandrous and adichogamous populations) and inflorescence size (two-, six-, or 10-flowered inflorescences) and measuring pollinator visitation, seed set, female outcrossing rate, and outcross siring success. Bees spent more time foraging on and visited more flowers of larger inflorescences than small. Female outcrossing rates did not vary among inflorescence size treatments. However, seed set per fruit decreased with increasing inflorescence size, likely as a result of increased abortion of selfed embryos, perhaps obscuring the magnitude of geitonogamous selfing. Protandrous plants had a marginally higher female outcrossing rate than adichogamous plants, but similar seed set. More importantly, protandrous plants had, on average, a twofold siring advantage relative to adichogamous plants. However, this siring advantage did not increase linearly with inflorescence size, suggesting that protandry acts to enhance siring success, but not exclusively by reducing between-flower interference. 相似文献
10.
The relationship between floral display size, pollen carryover and geitonogamy in Myosotis colensoi (Kirk) Macbride (Boraginaceae) 总被引:2,自引:0,他引:2
ALASTAIR W. ROBERTSON 《Biological journal of the Linnean Society. Linnean Society of London》1992,46(4):333-349
The relative amounts of self- and cross-pollen deposited on stigmas depends on both the number of pollinator visits that occur within plants and the amount of pollen carryover. Data collected for Myosotis colensoi (Kirk) Macbride and compiled from a survey of the literature, reveal that pollen carryover is frequently very high (upwards of 80%) and this at least partially relieves some of the effects of geitonogamous pollinator movements. It is suggested that in some cases, selection for traits that confer a high rate of pollen carryover may occur. Aspects of the plant–pollinator interaction that are likely to influence pollen carryover are discussed. 相似文献
11.
开花式样对传粉者行为及花粉散布的影响 总被引:8,自引:0,他引:8
理解植物花的特征可以从单花特征和群体特征两个层次入手。开花式样是植物的花在群体上的特征体现, 通过在开花数目、开花类型以及花的排列上的变化, 不同的开花式样对传粉者具有不同的吸引力, 影响昆虫在植株上的活动, 使花粉运动的方向发生相应变化, 从而影响着植物最终的交配结果。此外开花式样随环境改变也会发生一些变化。本文介绍了开花式样研究的进展, 对开花数目、开花类型以及花的排列等3个方面的已有研究进行了分别阐述, 并提出开花式样研究应更多地考虑影响传粉的各种因素。 相似文献
12.
13.
Pollination or fertilisation trigger floral senescence in a wide range of flowering plants, and yet little attention has been given to the implications of this phenomenon to mating system evolution. We examined the effects of pollination on floral senescence in the genus Leptosiphon. Species in the genus exhibit a wide range of breeding systems. In all cases, compatible pollination induced senescence; emasculated flowers lived longer than hand‐outcrossed flowers. In the self‐compatible species, Leptosiphon acicularis and L. bicolor, and in one highly selfing population of L. jepsonii, unmanipulated flowers had reduced longevity compared to emasculated flowers, suggesting that autonomous self‐pollination limits floral longevity in these species. Limited floral longevity in these highly selfing taxa may reduce opportunities for male outcross success, representing a possible source of selection on the mating system. In turn, the mating system might influence how selection acts on floral longevity; obligately outcrossing taxa are expected to benefit from longer floral longevities to maximise opportunities for pollination, while selfing taxa might benefit from earlier floral senescence to reduce resource expenditure. Overall, the longevity of unpollinated flowers increased with the level of outcrossing in the genus Leptosiphon. Our results taken together with those of a previous study and similar results in other species suggest that floral longevity may represent a largely unexamined role in mating system evolution. 相似文献
14.
15.
ROGER S. SEYMOUR 《Plant, cell & environment》2010,33(9):1474-1485
Effect of size of inflorescences, flowers and cones on maximum rate of heat production is analysed allometrically in 23 species of thermogenic plants having diverse structures and ranging between 1.8 and 600 g. Total respiration rate (, µmol s?1) varies with spadix mass (M, g) according to in 15 species of Araceae. Thermal conductance (C, mW °C?1) for spadices scales according to C = 18.5M0.73. Mass does not significantly affect the difference between floral and air temperature. Aroids with exposed appendices with high surface area have high thermal conductance, consistent with the need to vaporize attractive scents. True flowers have significantly lower heat production and thermal conductance, because closed petals retain heat that benefits resident insects. The florets on aroid spadices, either within a floral chamber or spathe, have intermediate thermal conductance, consistent with mixed roles. Mass‐specific rates of respiration are variable between species, but reach 900 nmol s?1 g?1 in aroid male florets, exceeding rates of all other plants and even most animals. Maximum mass‐specific respiration appears to be limited by oxygen delivery through individual cells. Reducing mass‐specific respiration may be one selective influence on the evolution of large size of thermogenic flowers. 相似文献
16.
Summary In many species of insect parasitoids, adult females mature eggs as they search their environment for hosts. In such species, the number of mature eggs, at the point of finding a host, is a function of the interhost time and the rate of egg maturation. Assuming that interhost search times are variable, we use a version of the marginal value theorem to derive a decision rule for optimizing the time spent exploiting individual hosts; this indirectly determines clutch size. We find that a threshold search time exists above which a female should simply lay her currently mature eggs and depart from the host. However, when the search time has been less than the threshold, a female should oviposit, but then remain on the host to mature and lay additional eggs, until the threshold time is reached. 相似文献
17.
Variation in composition of two bumble bee species across communities affects nectar robbing but maintains pollinator visitation rate to an alpine plant,Salvia przewalskii 下载免费PDF全文
ZHONG‐MING YE XIAO‐FANG JIN DAVID W. INOUYE QING‐FENG WANG CHUN‐FENG YANG 《Ecological Entomology》2018,43(3):363-370
1. In many flowering plants, bumble bees may forage as both pollinators and nectar robbers. This mixed foraging behaviour may be influenced by community context and consequently, potentially affect pollination of the focal plant. 2. Salvia przewalskii is both pollinated and robbed exclusively by bumble bees. In the present study area, it was legitimately visited by two species of bumble bees with different tongue length, Bombus friseanus and Bombus religiosus, but it was only robbed by Bombus friseanus, the shorter‐tongued bumble bee. The intensity of nectar robbing and pollinator visitation rate to the plant were investigated across 26 communities in the Hengduan Mountains in East Himalaya during a 2‐year project. For each of these communities, the floral diversity, and the population size and floral resource of S. przewalskii were quantified. The abundances of the two bumble bee species were also recorded. 3. Both nectar robbing and pollinator visitation rate were influenced by floral diversity. However, pollinator visitation rate was not affected by nectar robbing. The results revealed that relative abundance of the two bumble bee species significantly influenced the incidence of nectar robbing but not the pollinator visitation rate. Increased abundance of B. religiosus, the legitimate visitors, exacerbated nectar robbing, possibly by causing B. friseanus to shift to robbing; however, pollinator visitation remained at a relatively high level. 4. The results may help to explain the persistence of both nectar robbing and pollination, and suggest that, in comparison to pollination, nectar robbing is a more unstable event in a community. 相似文献
18.
We investigated the effect of flowering time, display size, and local floral density on fruit set in Tolumnia variegata, a pollination-limited orchid that offers no reward to its pollinator(s). During 1990, natural variation in flowering time, display size, and fruit set were monitored in 508 plants at one locality in Puerto Rico. The following season, orchid floral abundance per host tree (Randia aculeata) was manipulated to investigate its effect on fruit set. Four floral abundance treatments were established (700, 500, 300, and 100), each replicated four times. Flowering time was the most important trait affecting fruit set. The proportion of plants setting at least one fruit was significantly high early and late in the season, but low during the flowering peak. Thus, strong disruptive selection differential on flowering phenology was found. Display size had little effect on fruit set. A weak, but significant disruptive selection differential on display size was found. Orchid floral abundance per host tree had a significant effect on fruit set. Early in the season, T. variegata flowers with intermediate number of conspecific flowers exhibited a greater probability of setting fruit than those in host trees with fewer or more flowers. Our results show that flowering phenology may be evolutionarily unstable, possibly a consequence of the deception pollination system. Furthermore, a deception strategy would be relatively unsuccessful in populations where plants are found in either very dense or sparse patches. 相似文献
19.
Maternal reproductive success was examined in Styrax obassia (Styracaceae), a bumble-bee pollinated mass-flowering tree in a cool-temperate deciduous forest in northern Japan. The effects of flower number on the success of individual flowers at three levels (inflorescence, individual, and population) were considered. During 1995 and 1996, variations in size, light availability to branches, floral display size, and fruit set were monitored in 37 out of 211 individual S. obassia trees in a 4-ha forest plot. In addition, the locations of the 211 trees in this plot were mapped and the number of inflorescences in each tree was counted. A multiple regression analysis showed that flower number per inflorescence and inflorescence number per individual had negative effects on fruit set, and inflorescence number of aggregated clumps of flowering trees, tree size, and light resource had positive effects on fruit set although significant level were marginal. It is concluded that pollinator attraction may occur not at the individual tree level, but at the level of a clump of flowering trees. It is also suggested that geitonogamy increased with inflorescence number of tree and inflorescence size and that resource limitation was related to the light condition and variation of tree size. 相似文献
20.
James D. Thomson 《Evolutionary ecology》1988,2(1):65-76
Summary In field experiments withAralia hispida inflorescences, the following variables were manipulated: number of umbels per inflorescence, number of flowers per umbel, and amounts of pollen and nectar per flower. Visitation rates by bumble bees, the principal pollinators, were then observed. In the reward-variation experiments, bees appeared to learn the positions of nectar-rich shoots, and visited them significantly more often than nectar-poor shoots. They did not respond to similar variation in pollen production. The nectar preferences developed slowly after the treatments were imposed, and bees continued to favor sites that had been occupied by nectar-rich shoots even after the treatments were discontinued. Visitation rate was approximately proportional to flower number, making it unlikely that increases in inflorescence size produced a disproportionate gain in male reproductive success (a necessary condition in certain models for the evolution of dioecy). For a fixed number of flowers per inflorescence, bees preferred inflorescences with more umbels. In pairwise choice tests of male-phase and female-phase umbels of various sizes, bees preferred male-phase umbels and larger umbels; the preference for male-phase umbels is stronger in bees that had previously fed on male-phase umbels. 相似文献