首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
水稻小穗轴维管系统网络结构探讨   总被引:1,自引:0,他引:1  
对籼型、粳型或其不育系与保持系代表品种小穗解剖观察表明:水稻小穗轴维管系统网络由中央维管束和各分枝维管束复合而成。来自小穗柄的1条大的中央主束和几条边围维管束经数次分枝、联结,不断产生新的分枝维管束进入相应的结构。一般颖片中维管束1-2条,第一稃片中1-3条,第二稃片中1-4条,第二朵退化小花残余结构中0-3条,顶生可孕小花的外稃中5条,内稃中3条,浆片中各2条,雄蕊中各1条,雌蕊中3条,主束与支  相似文献   

2.
Parastrongylus (=Angiostrongylus) cantonensis, a lung worm of rats, was first reported in the United States in 1987, with a probable introduction by infected rats from ships docking in New Orleans, Louisiana, during the mid-1980s. Since then, it has been reported in nonhuman primates and a boy from New Orleans, and in a horse from Picayune, Mississippi, a distance of 87 km from New Orleans. Parastrongylus cantonensis infection is herein reported in a lemur (Varencia variegata rubra) from New Iberia, Louisiana, a distance of 222 km from New Orleans, and in a wood rat (Neotomafloridanus) and in 4 opossums (Didelphis virginiana) from Baton Rouge, Louisiana, a distance of 124 km from New Orleans. The potential of a great variety of gastropods serving as intermediate hosts in Louisiana may pose a threat to wildlife as well as to domesticated animals in the areas where infected Norway rats (Rattus norvegicus) are present.  相似文献   

3.
Eukaryotic initiation factor 3a (eIF3a) has been suggested to play a regulatory role in mRNA translation. Decreased eIF3a expression has been observed in differentiated cells while higher levels have been observed in cancer cells. However, whether eIF3a plays any role in differentiation and development is currently unknown. Here, we investigated eIF3a expression during mouse development and its role in differentiation of colon epithelial cells. We found that eIF3a expression was higher in fetal tissues compared with postnatal ones. Its expression in intestine, stomach, and lung abruptly stopped on the 18th day in gestation but persisted in liver, kidney, and heart throughout the postnatal stage at decreased levels. Similarly, eIF3a expression in colon cancer cell lines, HT-29 and Caco-2, drastically decreased prior to differentiation. Enforced eIF3a expression inhibited while knocking it down using small interference RNA promoted Caco-2 differentiation. Thus, eIF3a may play some roles in development and differentiation and that the decreased eIF3a expression may be a pre-requisite of intestinal epithelial cell differentiation.  相似文献   

4.
Insulin and fructose regulate malic enzyme activity by different processes   总被引:1,自引:0,他引:1  
A comparison of the regulatory processes controlling hepatic malic enzyme activity following treatment of diabetic rats with insulin or with a high fructose diet demonstrated several important differences. Insulin treatment caused a 50-fold increase in activity, due to a 12-fold increase in enzyme quantity and a 4-fold increase in specific activity(units/nmol). Dietary fructose caused a 3-fold increase in enzyme activity, due to a 3-fold increase in enzyme quantity, with no change in the specific activity of the enzyme. Thus, while fructose initiated a minor increase in malic enzyme activity, insulin was more effective, causing a substantially greater increase in enzyme activity and activating a hormone specific alteration in the catalytic activity of each enzyme molecule.  相似文献   

5.
6.
7.
The partial specific heat capacity and volume of globular proteins and dispersions of phosphatidylcholines in aqueous solutions have been determined over a broad temperature range using a precise scanning microcalorimeter and a vibrational densimeter. It is shown that the temperature-induced, gel-to-liquid crystalline phase transition in phosphatidylcholines proceeds without a noticeable change in heat capacity but with a significant increase in the specific volume, whereas heat denaturation in proteins takes place without a noticeable change in the volume but with a significant increase in heat capacity. This principal difference between temperature-induced conformational phase transitions in proteins and lipids demonstrates clearly that heat denaturation of proteins, in contrast to the gel-to-liquid crystalline phase transition in lipids, cannot be regarded as a process similar to melting. Consequently, the 'molten globule' does not appear to be a suitable model for a heat-denatured protein.  相似文献   

8.
The role of Anti-Müllerian hormone (Amh) during gonad development has been studied extensively in mammals, but is less well understood in other vertebrates. In male mammalian embryos, Sox9 activates expression of Amh, which initiates the regression of the Mullerian ducts and inhibits the expression of aromatase (Cyp19a1), the enzyme that converts androgens to estrogens. To better understand shared features of vertebrate gonadogenesis, we cloned amh cDNA from zebrafish, characterized its genomic structure, mapped it, analyzed conserved syntenies, studied its expression pattern in embryos, larvae, juveniles, and adults, and compared it to the expression patterns of sox9a, sox9b and cyp19a1a. We found that the onset of amh expression occurred while gonads were still undifferentiated and sox9a and cyp19a1a were already expressed. In differentiated gonads of juveniles, amh showed a sexually dimorphic expression pattern. In 31 days post-fertilization juveniles, testes expressed amh and sox9a, but not cyp19a1a, while ovaries expressed cyp19a1a and sox9b, but not amh. In adult testes, amh and sox9a were expressed in presumptive Sertoli cells. In adult ovaries, amh and cyp19a1a were expressed in granulosa cells surrounding the oocytes, and sox9b was expressed in a complementary fashion in the ooplasm of oocytes. The observed expression patterns of amh, sox9a, sox9b, and cyp19a1a in zebrafish correspond to the patterns expected if their regulatory interactions have been conserved with mammals. The finding that zebrafish sox9b and sox8 were not co-expressed with amh in oocytes excludes the possibility that amh expression in zebrafish granulosa cells is directly regulated by either of these two genes.  相似文献   

9.
The Col2a1 gene is expressed in notochord, otic vesicle, cartilaginous tissue and the anlage of endochondral bone during development in higher vertebrates. Type II collagen, a homotrimeric product of the Col2a1 gene, functions as a key regulatory protein for cartilage development and endochondral ossification. In medaka and zebrafish, a single homolog of the col2a1 gene has been identified. However, it is necessary to note that many genes are duplicated in teleost fishes. To clarify function of col2a1 genes in teleost fishes and to further understand the process of cartilage development and endochondral ossification, we cloned and mapped the gene loci of two col2a1 orthologs in medaka. The proteins encoded by both medaka col2a1a and col2a1b genes were highly conserved (85.3% and 82.6%) relative to human COL2A1, but synteny was not observed. We also examined the expression patterns of col2a1a and col2a1b during embryonic development. Whole-mount insitu hybridization data suggests that expression patterns of both medaka co2a1a and col2a1b genes are similar to that of zebrafish co2a1 in the early embryonic stages. In medaka, the two col2a1 genes show a closely correlated pattern of spatial and temporal expression. In late embryonic stages, however, there were differences in both expression patterns in the pectoral fin. This study is the first report of two homologs of col2a1 in teleosts and also the first examination of col2a1a and col2a1b expression patterns in this group.  相似文献   

10.
We consider a model for a network of phosphorylation-dephosphorylation cycles coupled through forward and backward regulatory interactions, such that a protein phosphorylated in a given cycle activates the phosphorylation of a protein by a kinase in the next cycle as well as the dephosphorylation of a protein by a phosphatase in a preceding cycle. The network is cyclically organized in such a way that the protein phosphorylated in the last cycle activates the kinase in the first cycle. We study the dynamics of the network in the presence of both forward and backward coupling, in conditions where a threshold exists in each cycle in the amount of protein phosphorylated as a function of the ratio of kinase to phosphatase maximum rates. We show that this system can display sustained (limit-cycle) oscillations in which each cycle in the pathway is successively turned on and off, in a sequence resembling the fall of a series of dominoes. The model thus provides an example of a biochemical system displaying the dynamics of dominoes and clocks (Murray & Kirschner, 1989). It also shows that a continuum of clock waveforms exists of which the fall of dominoes represents a limit. When the cycles in the network are linked through only forward (positive) coupling, bistability is observed, while in the presence of only backward (negative) coupling, the system can display multistability or oscillations, depending on the number of cycles in the network. Inhibition or activation of any kinase or phosphatase in the network immediately stops the oscillations by bringing the system into a stable steady state; oscillations resume when the initial value of the kinase or phosphatase rate is restored. The progression of the system on the limit cycle can thus be temporarily halted as long as an inhibitor is present, much as when a domino is held in place. These results suggest that the eukaryotic cell cycle, governed by a network of phosphorylation-dephosphorylation reactions in which the negative control of cyclin-dependent kinases plays a prominent role, behaves as a limit-cycle oscillator impeded in the presence of inhibitors. We contrast the case where the sequence of domino-like transitions constitutes the clock with the case where the sequence of transitions is passively coupled to a biochemical oscillator operating as an independent clock.  相似文献   

11.
Normal cod eggs respond to insemination by a rapid cortical reaction followed by an increase in total osmolarity and a small increase in egg diameter. The chorion becomes harder, but this is a slower process reaching its maximum strength after c . 24 h. Bad eggs are characterized by a slower or incomplete cortical reaction, resulting in a slower rise in osmolarity and a softer chorion. Bad eggs rapidly lose their capacity for fertilization. In unfertilized eggs in sea water, no cortical reaction is observed. There is, however, a rise in total osmolarity and a hardening of the chorion.  相似文献   

12.
We previously identified Xenopus Pat1a (P100) as a member of the maternal CPEB RNP complex, whose components resemble those of P-(rocessing) bodies, and which is implicated in translational control in Xenopus oocytes. Database searches have identified Pat1a proteins in other vertebrates, as well as paralogous Pat1b proteins. Here we characterize Pat1 proteins, which have no readily discernable sequence features, in Xenopus oocytes, eggs, and early embryos and in human tissue culture cells. xPat1a and 1b have essentially mutually exclusive expression patterns in oogenesis and embryogenesis. xPat1a is degraded during meiotic maturation, via PEST-like regions, while xPat1b mRNA is translationally activated at GVBD by cytoplasmic polyadenylation. Pat1 proteins bind RNA in vitro, via a central domain, with a preference for G-rich sequences, including the NRAS 5′ UTR G-quadruplex-forming sequence. When tethered to reporter mRNA, both Pat proteins repress translation in oocytes. Indeed, both epitope-tagged proteins interact with the same components of the CPEB RNP complex, including CPEB, Xp54, eIF4E1b, Rap55B, and ePAB. However, examining endogenous protein interactions, we find that in oocytes only xPat1a is a bona fide component of the CPEB RNP, and that xPat1b resides in a separate large complex. In tissue culture cells, hPat1b localizes to P-bodies, while mPat1a-GFP is either found weakly in P-bodies or disperses P-bodies in a dominant-negative fashion. Altogether we conclude that Pat1a and Pat1b proteins have distinct functions, mediated in separate complexes. Pat1a is a translational repressor in oocytes in a CPEB-containing complex, and Pat1b is a component of P-bodies in somatic cells.  相似文献   

13.
14.
Fxralpha is known to regulate a variety of metabolic processes, including bile acid, cholesterol, and carbohydrate metabolism. In this study, we show direct evidence that Fxralpha is a key player in maintaining sulfate homeostasis. We identified and characterized the sodium/sulfate co-transporter (NaS-1; Slc13a1) as an Fxralpha target gene expressed in the kidney and intestine. Electromobility shift assays, chromatin immunoprecipitation, and promoter reporter studies identified a single functional Fxralpha response element in the second intron of the mouse Slc13a1 gene. Treatment of wild-type mice with GW4064, a synthetic Fxralpha agonist, induced Slc13a1 mRNA in the intestine and kidney. Slc13a1 mRNA was also induced in the kidney and intestine of wild-type, but not Fxralpha-/- mice, after treatment with the hepatotoxin alpha-naphthylisothiocyanate, which is known to result in elevated blood bile acid levels. Finally, we observed a decrease in Slc13a1 mRNA in the kidney and intestine of Fxralpha-/- mice and a corresponding increase in urinary excretion of free sulfates as compared with wild-type mice. These results demonstrate that mouse Slc13a1 is a novel Fxralpha target gene expressed in the kidney and intestine and that in the absence of Fxralpha, mice waste sulfate into the urine. Thus, Fxralpha is necessary for normal sulfate homeostasis in vivo.  相似文献   

15.
1. Exposure of fat-pads to increasing concentrations of K+ in the presence of insulin stimulates the incorporation of labelled glucose into glycogen. In the absence of hormone, only a slight incorporation of glucose into glycogen and slight glucose oxidation were detectable. 2. Ouabain alone, up to 100 microM, had no effect on synthesis of glycogen. Ouabain reinforced the effect of insulin on the conversion of glucose into glycogen in a Na+ medium and in a equimolar Na+-K+ medium, but not in a K+ medium. In addition, ouabain modified the optimal K+/Na+ ratio for glycogen synthesis. 3. The proportion of glycogen synthase in the active form was increased in a K+ medium, and a faster rate of conversion of synthase b into a was observed under these conditions. No difference was detected in the rate of inactivation of phosphorylase in a K+ or a Na+ medium. 4. Even though these results, taken together, are consistent with the proposed role of phosphorylase a in the regulation of synthase activation, the molecular mechanism of action of K+ in adipose tissue in increasing synthesis of glycogen cannot be explained simply by a faster inactivation of phosphorylase a. It is concluded that some undetermined effector(s) or signal could itself be a primary determinant for the greater activation of synthase observed in a K+ medium.  相似文献   

16.
microRNA-199a (miR-199a) is a highly conserved miRNA, always deregulated in numerous human tumors. The results of microarray analysis indicated that miR-199a was frequently downregulated in hepatocellular carcinoma (HCC). The expression levels of miR-199a in 11 pairs of matched HCC neoplastic and adjacent non-neoplastic tissues, 5 HCC cell lines and liver cell line L02 were examined by quantitative real-time PCR analysis. We found miR-199a was significantly down-regulated in HCC tissues when compared with pair-matched adjacent non-tumor tissues. We also found the expression level of miR-199a was also substantially decreased in several human HCC cell lines including SMMC-7721, BEL-7402, BEL-7701, MHCC97H, and HepG2. To investigate the role of miR-199a in tumorigenesis, we developed a lentiviral vector for the expression of pre-miR-199a (Lenti-miR-199a). Lenti-miR-199a inhibited HCC cell proliferation in vitro and in vivo. Compared to parental cells or cells transfected with a control vector, the overexpression of microRNA-199a in the HCC cell lines HepG2 stably was showed to reduce cell proliferation in vitro and in vivo. Luciferase reporter assay revealed the regulation of miR-199a on 3’-UTR of HIF-1α. Further investigation confirmed that miR-199a significantly reduced the endogenous protein level of HIF-1α in hypoxia. MiR-199a inhibits cell proliferation in vitro and in vivo partly through down-regulation of HIF-1α in human HCC. Thus, these studies provide an important new insight into the pathogenesis of human HCC and it may open a new perspective for the development of effective gene therapy for human HCC.  相似文献   

17.
We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a expression in human astrocytes does not affect cell survival and cell cycle. We uncovered the oncogenes c-Met, Notch-1 and Notch-2 as direct targets of miR-34a that are inhibited by miR-34a transfection. We found that c-Met levels in human glioma specimens inversely correlate with miR-34a levels. We showed that c-Met and Notch partially mediate the inhibitory effects of miR-34a on cell proliferation and cell death. We also found that mir-34a expression inhibits in vivo glioma xenograft growth. We concluded that miR-34a is a potential tumor suppressor in brain tumors that acts by targeting multiple oncogenes. In this extra view, we briefly review and discuss the implications of these findings and present new data on the effects of miR-34a in glioma stem cells. The new data show that miR-34a expression inhibits various malignancy endpoints in glioma stem cells. Importantly, they also show for the first time that miR-34a expression induces glioma stem cell differentiation. Altogether, the data suggest that miR-34a is a tumor suppressor and a potential potent therapeutic agent that acts by targeting multiple oncogenic pathways in brain tumors and by inducing the differentiation of cancer stem cells.  相似文献   

18.
Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition.  相似文献   

19.
Brome mosaic virus (BMV) is a positive-strand RNA virus that encodes two RNA replication proteins, the helicaselike 1a and the polymeraselike 2a. 1a and 2a share extensive sequence similarities with proteins encoded by many other members of the alphaviruslike superfamily. While further purifying enzymatically active RNA-dependent RNA polymerase from plants infected by BMV, we observed that 1a, 2a, and the polymerase activity all cofractionated through multiple independent purification steps. Moreover, using immunoprecipitation, we found that BMV 1a and 2a proteins synthesized in rabbit reticulocyte lysates or insect cells can form a specific complex in vitro. Complex formation was more efficient when 1a and 2a were cotranslated than when they were mixed after independent synthesis. In an antibody-independent assay, in vitro-translated 1a protein was also found to bind to 2a protein fixed on a nylon membrane. A three-amino-acid insertion in 1a that blocks BMV RNA replication in vivo also blocked in vitro interaction with 2a, while another two-amino-acid insertion that renders the 1a protein temperature sensitive for RNA replication interacted in vitro with 2a at 24 degrees C but not at 32 degrees C. These results and previous genetic data suggest that the 1a-2a interaction observed in vitro is required for BMV RNA replication and may have direct implications for other members of the alphaviruslike superfamily.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号