首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
G Mazzuoli  M Schemann 《PloS one》2012,7(7):e39887

Background

Within the gut the autonomous enteric nervous system (ENS) is able to sense mechanical stimuli and to trigger gut reflex behaviour. We previously proposed a novel sensory circuit in the ENS which consists of multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the guinea pig. The aim of this study was to validate this concept by studying its applicability to other species or gut regions.

Methodology/Principal Findings

We deformed myenteric ganglia in the mouse small and large intestine and recorded spike discharge using voltage sensitive dye imaging. We also analysed expression of markers hitherto proposed to label mouse sensory myenteric neurons in the ileum (NF145kD) or colon (calretinin). RAMEN constituted 22% and 15% of myenteric neurons per ganglion in the ileum and colon, respectively. They encoded dynamic rather than sustained deformation. In the colon, 7% of mechanosensitive neurons fired throughout the sustained deformation, a behaviour typical for slowly adapting echanosensitive neurons (SAMEN). RAMEN and SAMEN responded directly to mechanical deformation as their response remained unchanged after synaptic blockade in low Ca++/high Mg++. Activity levels of RAMEN increased with the degree of ganglion deformation. Recruitment of more RAMEN with stronger stimuli may suggest low and high threshold RAMEN. The majority of RAMEN were cholinergic but most lacked expression of NF145kD or calretinin.

Conclusions/Significance

We showed for the first time that fundamental properties of mechanosensitive enteric neurons, such as firing pattern, encoding of dynamic deformation, cholinergic phenotype and their proportion, are conserved across species and regions. We conclude that RAMEN are important for mechanotransduction in the ENS. They directly encode dynamic changes in force as their firing frequency is proportional to the degree of deformation of the ganglion they reside in. The additional existence of SAMEN in the colon is likely an adaptation to colonic motor patterns which consist of phasic and tonic contractions.  相似文献   

3.
Summary Several recent studies suggested that serotonergic neuron-like elements are present in the guinea pig ileum. The present paper reports an extensive study of the digestive tract of the rat with the use of a histofluorescence technique. Administration of the serotonin precursor, tryptophan, associated with a monoamine oxidase inhibitor, did not allow histochemical demonstration of rapidly fading, yellow fluorescent, 6-hydroxydopamine-resistant neurons; conversely such neurons were readily detected in the brain. It is concluded that serotonergic neuron-like elements cannot be detected histochemically in the rat myenteric plexus area after chemical sympathectomy.  相似文献   

4.
The role of the interstitial cells of Cajal (ICC) associated with the myenteric plexus (ICC-MP) as regulators of the motility of the colonic external muscle remains unclear. Ultrastructural studies of myenteric interstitial cells are lacking in human colon. We therefore characterized the distinctive ultrastructure of these cells in the myenteric region of the colon by transmission electron microscopy of the region between the main muscle layers in all parts of the colon in unaffected areas of resected specimens from nine adult human patients. ICC-MP were similar in various colonic regions and had myoid features such as scattered caveolae, prominent intermediate filaments, and cytoplasmic dense bodies. We found characteristic dense membrane-associated bands with a patchy basal lamina, invaginating cellular protrusions (peg and socket junctions) between ICC and between ICC and muscle cells, and close contacts (<100 nm) between ICC and nerves. No gap junctions were observed. Fibroblast-like cells (FLC) were abundant showing well-developed secretory organelles, including coated vesicles, but lacked prominent intermediate filaments and caveolae. FLC had a patchy basal lamina, and peg and socket junctions were observed between them. Macrophage-like cells frequently occurred in close apposition with FLC and, more seldomly, with ICC-MP. The ultrastructure of ICC and FLC in the myenteric region of the human colon thus differs characteristically, but significant overlaps in the ultrastructure between ICC and FLC might complicate any interpretation in pathological ultrastructural studies of the human colonic muscle layer. An erratum to this article can be found at  相似文献   

5.
6.
The effect of age on the proportion of nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-positive neurons was investigated in the myenteric plexus of five different gastric areas of 1-day-, 1-week-, 2-week-, 1-month- and 2-month-old rats. Protein gene product 9.5 immunocytochemistry was used as a marker for the total enteric neuron population in order to establish the percentage of gastric nitrergic neurons in relation to age. The percentage of NADPHd-positive neurons in the proximal parts of the rat stomach (34–38%) is significantly higher than in the antral part (29%). This difference persists in all the age groups investigated. No significant relative increase with age of NADPHd-positive neurons could be observed in any of the areas studied. These findings imply that the increased nitrergic response in the rat proximal stomach as seen in pharmacological studies cannot be explained by an increased relative number of nitrergic neurons. Accepted: 31 March 1999  相似文献   

7.
The parts of the colon differ in motor function and in responses to extrinsic and intrinsic nerve stimulation. The distribution of myelinated nerve fibers in the colonic myenteric plexus is not known. Because these fibers might be largely extrinsic in origin, their distribution might indicate the domain of influence of extrinsic nerves and help to explain the different behaviors of the different parts of the colon. Myelinated fibers were examined by electron microscopy in cross sections of the ascending nerves and in myelin-stained whole-mount preparations in the colon. The ascending nerves are much like one another. They have the structure of peripheral nerves, not that of myenteric plexus. The proportion of myelinated fibers in the ascending nerves declines rostrad with no uniform change in total nerve fiber number. Cross-sectional areas of ascending nerves, 3,304 to 7,448 microns 2; total number of nerve fibers per profile, 703-2,651; and mean myelin coat thickness, 0.45 +/- 0.01 micron, do not change uniformly along the ascending nerves. Myelinated fibers are about 2% of total fibers in the extramural colonic nerves, 7-9% in the ascending nerves in the sigmoid colon, and 2-3% at the rostrad ends of the ascending nerves in the transverse colon. Blood vessels lie at the core of each ascending nerve and on the nerve sheath. Myelinated fibers in the ascending nerves degenerate after section of colonic branches of the pelvic plexus and after section of the pudendal nerves, indicating that myelinated nerves reach the colon through both pathways.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A mechanical or chemical stimulus applied to the intestinal mucosa induces motility reflexes in the rat colon. Enteric neurons containing calcitonin gene-related peptide (CGRP) have been suggested as intrinsic primary afferent neurons responsible for mediating such reflexes. In the present study, immunohistochemistry was performed on whole-mount stretch preparations to investigate chemical profiles, morphological characteristics and projections of CGRP-containing neurons in the myenteric plexus of the rat colon. CGRP-positive neuronal cell bodies were detected in preparations incubated with colchicine-containing medium, whereas CGRP-positive nerve fibres were found in colchicine-untreated preparations. These neurons had large oval or round cell bodies that were also immunoreactive for the calcium-binding protein calretinin and neurofilament 200. Myenteric neurons positive for both calretinin and neurofilament 200 had several long processes that emerged from the cell body, consistent with Dogiel type II morphology. Application of the neural tracer DiI to the intestinal mucosa revealed that DiI-labelled myenteric neurons each had an oval or round cell body immunoreactive for calretinin. Thus, CGRP-containing myenteric neurons are Dogiel type II neurons and are immunoreactive for calretinin and neurofilament 200 in the rat colon. These neurons probably project to the intestinal mucosa. This study was supported by a Waseda University Grant for Special Research Projects (2008A-889).  相似文献   

9.
The differentiation of the axons in the cat myenteric ganglia of the gastro-intestinal sphincters has been examined during pre- and postnatal development. The quantitative analysis has been also used. The differentiation of the axons was a prolonged process that advanced parallel to the maturation of the myenteric nerve perikarya and dendrites. The early fetal period was marked by axonal growth cones. Regardless of the fact that during the development their frequency decreased at the expense of axon varicosities, growth cones were also observed in the first postnatal month. The formation of the axon varicosities was intensive in the late fetal period and in the first weeks after birth. This was judged from the changes in the volume fraction of the varicosities to total neuropil and the number of the varicosities per 100 sp x micrometer of neuropil. The maturation of the varicosities exhibited a longer course which was evident from the changes in the number of the vesicles and in the varicosity area. The cholinergic varicosities differentiated first and most quickly. The so-called p-type varicosities appeared as early as the fetal period, but their number continued to increase after birth. The adrenergic varicosities developed most slowly, which was confirmed by the experiments with 6-OHDA. The axons differentiated with a different speed in the three sphincters examined.  相似文献   

10.
We tested the hypothesis that intrinsic neurons of the rat gastric myenteric plexus can be activated by an acid (HCl) challenge of the mucosa. Activated neurons were visualized by immunohistochemical detection of c-Fos, a marker for neuronal excitation. The neurochemical identity of the neurons activated by the HCl challenge was determined by colocalizing c-Fos with a marker for excitatory pathways, choline acetyltransferase (ChAT), and a marker for inhibitory pathways, nitric oxide synthase (NOS). Two hours after intragastric administration of HCl or saline, stomachs were removed and immunofluorescence triple labeling of myenteric neurons was carried out on whole mount preparations. Treatment with 0.35, 0.5, and 0.7 M HCl induced c-Fos in 8%, 56%, and 64%, respectively, of NOS-positive but not ChAT-positive neurons. c-Fos was also seen in glial cells of HCl-treated rats, whereas in saline-treated animals c-Fos was absent from the myenteric plexus. HCl treatment did not change the proportion of ChAT- and NOS-immunoreactive neurons in the myenteric ganglia. It is concluded that gastric acid challenge concentration-dependently stimulates a subpopulation of nitrergic, but not cholinergic, myenteric plexus neurons, which may play a role in muscle relaxation, vasodilatation, and/or secretion.  相似文献   

11.
Intense and very intense reactions were obtained for acid phosphatase, calcium activated ATP-ase (pH 9.4), magnesium activated ATP-ase (pH 7.2) and glucose-6-phosphatase in the cytoplasms of the myenteric plexus nerve cells of the small intestine of Macacus rhesus and rabbit. Nucleotidase activity was moderate or slight and unspecific alkaline phosphatase activity absent. Both ATP-ases presented an intense activity in the myenteric plexus nerve cells of human fetuses 30, 33, and 34 weeks old; 5-nucleotidase activity, slight in the 30-week-old fetuses became more intense in the 33- and 34-week-old fetuses. The satellite neuroglial cells, nerve fibers and blood capillaries presented negative alkaline phosphatase reactions and intense or very intense activities of the other phosphatases.  相似文献   

12.
By means of retrograde transport of the fluorescent marker primulin the initial part of the sympathetic innervation of the myenteric nervous plexus of the descending colon has been characterized in cats and guinea pigs. When primulin is injected into the myenteric nervous plexus, marked neurons are revealed in the caudal mesenteric ganglion, in the celiac plexus ganglia, in the sympathetic trunk ganglia. The marked nervous populations of the extramural sympathetic ganglia differ in their form, size, number of neurons and their distribution.  相似文献   

13.
14.
15.
16.
This study aimed at estimating the proportion of human myenteric Dogiel type II neurons, putative intrinsic primary afferent neurons (IPANs), in relation to the entire myenteric neuron population. Since, at present, there is no known single marker, which specifically labels these neurons, we tried to identify the most appropriate marker combination based on the results of an earlier study. For this purpose, 10 wholemounts derived from human small intestinal segments were immunohistochemically triple-stained for calretinin (CALR), somatostatin (SOM) and neurofilaments (NF) and 9 were stained for substance P (SP), SOM and NF. In each wholemount, 15 ganglia selected randomly were evaluated. On the basis of their NF-reactivity, neurons reactive for one or co-reative for both of the other two markers, respectively, were morphologically classified as type II or non-type II neurons. We found that the majorities of neurons co-reactive for CALR/SOM and SP/SOM, respectively, were type II neurons whereas this was not the case for neurons, which were reactive for only one of the two markers. One of the statistical parameters estimated was the positive predictive value, the probability that a neuron displaying CALR/SOM- or SP/SOM-co-reactivity, respectively, is a type II neuron. This value was 97% in case of CALR/SOM- and 95% in case of SP/SOM-co-staining. Although the difference of the statistical parameters between the two stainings was not significant, CALR and SOM were used to estimate indirectly the proportion of type II neurons, in wholemounts co-stained with the pan-neuronal marker neuronal protein HuC/HuD (HU). In these wholemounts, altogether 9.1% of neurons were coreactive for CALR/SOM. We suggest that the proportion of myenteric type II neurons in the human small intestine is related to the proportion of CALR/SOM-co-reactive neurons and may be near to one tenth of the total myenteric neuronal population.  相似文献   

17.
Summary An electrophoretic analysis of the microtubule-containing transport channels, known as nutritive tubes, which link the nutritive cells with the chain of developing oocytes in the telotrophic ovarioles of the hemipteran Notonecta glauca, has been carried out. The major polypeptide components resolved have been identified tentatively as -and -tubulin subunits by their comparable electrophoretic mobility to tubulin subunits from purified mammalian brain microtubule protein. Co-migration of some of the minor components with proteins resolved from insect ribosomes (which are the only other components of the nutritive tubes as seen in ultrastructural studies) indicates that these may be ribosomal proteins. Also characterized by electrophoresis were the nutritive cells, which are the source of synthesis of the components transported via the nutritive tubes, and the oocytes, the sites of their accumulation.  相似文献   

18.
Nitric oxide synthase (NOS) immunoreactivity occurs in two groups of neurons in the guinea pig small intestine: descending interneurons that are also immunoreactive for choline acetyltransferase (ChAT), and inhibitory motor neurons that lack ChAT immunoreactivity. Interneurons that are involved in local reflexes would be expected to have inputs from intrinsic primary afferent (sensory) neurons, most of which are calbindin-immunoreactive. We examined this possibility using triple staining for NOS, ChAT and calbindin immunoreactivity and investigated the relationships between calbindin-immunoreactive varicosities and the cell bodies of NOS-immunoreactive neurons, using high-resolution confocal microscopy and electron microscopy. By confocal microscopy, we found that the cell bodies of ChAT/NOS interneurons received 84 +/- 23 (mean +/- SD) direct appositions from calbindin-immunoreactive varicosities and that the cell bodies of NOS-inhibitory motor neurons received 82 +/- 20 appositions. Electron-microscopic examination of the relations of 265-calbindin-immunoreactive varicosities, at distances within the resolution of the confocal microscope (300 nm), to 30 NOS-immunoreactive nerve cells indicated that 84% formed close contacts or synapses and 16% were separated from neurons by thin glial cell processes. Thus, each NOS-immunoreactive nerve cell receives about 70 synaptic inputs or close contacts from the calbindin-immunoreactive varicosities of intrinsic primary afferent neurons. It is concluded that there are monosynaptic reflex connections in which intrinsic primary afferent neurons synapse directly with motor neurons and di- or poly-synaptic reflexes in which ChAT- and NOS-immunoreactive neurons are interneurons, interposed between intrinsic primary afferent neurons and NOS-inhibitory neurons.  相似文献   

19.
Lymphocytes are antinociceptive and can modulate visceral pain perception in mice. Previously, we have shown that adoptive transfer of CD4+ T cells to severe combined immune-deficient (SCID) mice normalized immunodeficiency-related visceral hyperalgesia. Pain attenuation was associated with an increase in beta-endorphin release by T cells and an upregulation of beta-endorphin in the enteric nervous system. In this study, we investigated the relationship between T cells and opioid expression in the myenteric plexus. We examined opioid peptide and receptor expression in the myenteric plexus in the presence and absence of mucosal T cells. We found a positive association between T cells and beta-endorphin expression; this was accompanied by a downregulation of the micro-opioid receptor (MOR). In vitro, T helper (Th) type 1 and type 2 cytokine stimulation of CD4+ T cells or isolation of T cells from in vivo Th-polarized mice did not increase T cell release of beta-endorphin or the induction of beta-endorphin expression in the myenteric plexus. However, exogenous beta-endorphin did upregulate beta-endorphin expression, and both cycloheximide and naloxone methiodide inhibited peptide upregulation. Therefore, our results suggest that nonpolarized CD4+ T cells release beta-endorphin, which, through an interaction with MOR, stimulates an upregulation of beta-endorphin expression in the myenteric plexus. Thus, we propose that the mechanism underlying lymphocyte modulation of visceral pain involves T cell modulation of opioid expression in the enteric nervous system.  相似文献   

20.
Action potentials were recorded extracellularly from spontaneously firing neurons in the myenteric plexus of the guinea pig ileum. Morphine, which inhibits acetylcholine release from the myenteric plexus, inhibited the spontaneous electrical activity of about half the cells studied, while serotonin elevated the firing rate of these cells. Units not stimulated by serotonin were not inhibited by morphine or levorphanol. Morphine also prevented the increase in firing rate caused by serotonin. These effects of morphine were stereospecific and blocked by naloxone, and are therefore considered to be specific opiate effects. This study demonstrates opposing effects of narcotic opiates and serotonin on the electrical activity of serotoninoceptive neurons in the myenteric plexus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号