首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The aim of this study, directed toward the low-temperature preservation of dog small intestine, was to determine the most satisfactory conditions of use of the cryophylactic agent dimethylsulfoxide (DMSO).  相似文献   

3.
The glycolipids of dog intestine   总被引:2,自引:0,他引:2  
  相似文献   

4.
Motilin-like-immunoreactivity was detected in various regions of canine intestinal tract and brain. Its content in the brain was much smaller than in the gut. Its regional distribution was not uniform in both organs. On gel chromatography (G-50 SF), intestinal extracts revealed a main molecular form of motilin-like-immunoreactivity corresponding to motilin 1-22, while, in the brain, it eluted predominantly with the void volume. Further characterization of this later substance does not suggest it is strongly related to motilin. Putative motilin precursors of 14 kd and 6 kd are detectable in small concentration in intestinal mucosa.  相似文献   

5.
Interdependence of lung units in intact dog lungs   总被引:1,自引:0,他引:1  
  相似文献   

6.
Acute normovolemic hemodilution (ANH) is efficient in reducing allogenic blood transfusion needs during elective surgery. Tissue oxygenation is maintained by increased cardiac output and oxygen extraction and, presumably, a more homogeneous tissue perfusion. The aim of this study was to investigate blood flow distribution and oxygenation of skeletal muscle. ANH from hematocrit of 36 +/- 3 to 20 +/- 1% was performed in 22 splenectomized, anesthetized beagles (17 analyzed) ventilated with room air. Normovolemia was confirmed by measurement of blood volume. Distribution of perfusion within skeletal muscle was determined by using radioactive microspheres. Tissue oxygen partial pressure was assessed with a polarographic platinum surface electrode. Cardiac index (3.69 +/- 0.79 vs. 4.79 +/- 0.73 l. min-1. m-2) and muscle perfusion (4.07 +/- 0.44 vs. 5.18 +/- 0.36 ml. 100 g-1. min-1) were increased at hematocrit of 20%. Oxygen delivery to skeletal muscle was reduced to 74% of baseline values (0.64 +/- 0.06 vs. 0.48 +/- 0.03 ml O2. 100 g-1. min-1). Nevertheless, tissue PO2 was preserved (27.4 +/- 1.3 vs. 29.9 +/- 1. 4 Torr). Heterogeneity of muscle perfusion (relative dispersion) was reduced after ANH (20.0 +/- 2.2 vs. 13.9 +/- 1.5%). We conclude that a more homogeneous distribution of perfusion is one mechanism for the preservation of tissue oxygenation after moderate ANH, despite reduced oxygen delivery.  相似文献   

7.
The composition of the glycolipids in dog intestine   总被引:2,自引:0,他引:2  
J M McKibbin 《Biochemistry》1969,8(2):679-685
  相似文献   

8.
Motility effects of opioid peptides in dog intestine   总被引:1,自引:0,他引:1  
Six opioid peptides, like morphine, were found to produce dose-dependent contractions of dog isolated intestine when administered as intraarterial boluses. The increases in incidence and amplitude of intestinal contractions were antagonized by naloxone. The rank order of potency of the opioid agonists tested was D-Ala2-met-enkephalinamide greater than D-Ala2-leu-enkephalinamide greater than met-enkephalin greater than beta-endorphin 1-31 greater than morphine greater than morphiceptin greater than dynorphin 1-13. The contractions induced by two opioid agonists displayed differential sensitivity to blockade by tetrodotoxin (TTX). Met-enkephalin was barely affected by concentrations of TTX that markedly reduced responses to morphiceptin. Some portion of the motility effect of metenkephalin may be exerted directly on intestinal smooth muscle.  相似文献   

9.
10.
11.
12.
13.
Pacing of mouse intestine is driven by spontaneous activity of a network of interstitial cells of Cajal in the myenteric plexus (ICC-MP). So far, highly dissected circular muscle (CM) strips from control and mutant mice lacking ICC-MP and isolated, cultured ICC from newborn control mice were used to analyze its properties. Using intact circular and longitudinal segments of intestine, we recently reported that there were both significant similarities and differences between pacing studied in segments and from isolated, dissected tissues. Here, we report additional similarities and differences in our model from those in highly reduced systems. Similar to cultured or dissected intestine, blockade of sarcoplasmic-endoplasmic reticulum Ca(2+) pumps with thapsigargin or cyclopiazonic acid reduced pacing frequency, but thapsigargin was less effective than in isolated, cultured ICC. Moreover, inhibition of inositol 1,4,5-trisphosphate (IP(3)) receptors with xestospongin C, a putative inhibitor of IP(3) receptors, failed to affect pacing but successfully blocked increased pacing frequency by phorbol ester. 2-Aminoethoxy-diphenylborate, a putative blocker of IP(3)-mediated calcium release, caused a significant decrease in the amplitude and frequency of contractions. The mitochondrial uncoupler carbonyl cyanide p-trifluormethoxyphenylhydrazone blocked pacing and KCl-induced contractions at a concentration of 1 microM. The cyclic nucleotide agonists sodium nitroprusside (SNP), forskolin, and 8-bromo-cGMP inhibited pacing in CM. In longitudinal muscle (LM), SNP and forskolin had little effect on pacing. Furthermore, dibutyryl-cAMP did not affect pacing in CM or LM. These results suggest that pacing in intact intestine is under partly similar regulatory control as in more reduced systems. However, pacing in intact intestine is not affected by xestospongin C, which abolishes pacing in isolated, cultured ICC and exhibits attenuated responses to thapsigargin. Also, major differences between LM and CM suggest a separate pacemaker may drive LM.  相似文献   

14.
15.
16.
From the Fick equation comes that VO2 = DO2 x O2ER, where VO2--oxygen consumption, DO2--oxygen delivery, O2ER--oxygen extraction ratio. These 3 factors can be represented in one figure using the fy = fx x fz equation. This equation spans a surface representing all the possible movements and relationships of tissue oxygenation parameters, helping in this way to evaluate the problems of tissue oxygenation more precisely.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号