首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In the mammalian genome CpG islands are associated with functional genes and cloning of these islands could be an alternative approach for cloning functional genes. Recently we have developed a new approach for cloning CpG islands and constructing NotI linking libraries. We have initiated the construction of a NotI restriction map for chromosome 3, especially focusing on the rearrangements in the 3p14-p21 region, which are associated with different malignancies. CpG islands from this region are useful for isolation of candidate tumor suppressor genes that map to this region and for isolating NotI-linking clones from 3p14-p21 for mapping purposes. Here we suggest a modification of Alu-PCR as an approach to isolating Not I sites (e.g., CpG islands) from defined regions of the chromosome. Instead of using whole chromosomal DNA for Alu-PCR, we have used representative NotI-linking libraries from hybrid cell lines containing either whole or deleted human chromosome 3 (MCH903.1 and MCH924.4, respectively). This decreases the complexity of the Alu-PCR products 10-100 times compared to the whole human genome. Using this modification, we can isolate NotI-linking clones, which are natural markers on the chromosome, rather than random genomic fragments. Among eight clones selected by this method, seven were from the region deleted in MCH924.4. The results clearly demonstrate the feasibility of Alu-PCR for isolating CpG islands from defined regions of the genome.  相似文献   

2.
3.
4.
The humanPWP2gene is the human homologue of the yeast periodic tryptophan protein 2 (PWP2) gene and is a member of the gene family that contains tryptophan-aspartate (WD) repeats. Genomic sequencing revealed that the humanPWP2gene consists of 21 exons spanning approximately 24 kb and locates just between the two genes EHOC-1 and KNP-I and distal to aNotI site of LJ104 (D21S1460) on chromosome 21q22.3. Analysis of the 5′-flanking DNA sequence revealed that the upstream region of thePWP2gene is associated with a CpG island containing theNotI site of LJ104. SincePWP2is considered to be a candidate for genetic disorders mapped in the 21q22.3 region, the information including nucleotide sequence and genomic organization of thePWP2gene should be invaluable for the mutation analysis of the corresponding genetic disorders.  相似文献   

5.
Despite the presence of several human disease genes on chromosome11q13, few of them have been molecularly cloned. Here, we reportthe construction of a contig map encompassing 11q13.1–q13.3using bacteriophage P1 (P1), bacterial artificial chromosome(BAC), and P1-derived artificial chromosome (PAC). The contigmap comprises 32 P1 clones, 27 BAC clones, 6 PAC clones, and1 YAC clone and spans a 3-Mb region from D11S480 to D11S913.The map encompasses all the candidate loci of Bardet-Biedlesyndrome type I (BBS1) and spinocerebellar ataxia type 5 (SCA5),one-third of the distal region for hereditary paraganglioma2 (PGL2), and one-third of the central region for insulin-dependentdiabetes mellitus 4 (IDDM4). In the process of map construction,61 new sequence-tagged site (STS) markers were developed fromthe Not I linking clones and the termini of clone inserts. Wehave also mapped 30 ESTs on this map. This contig map will facilitatethe isolation of polymorphic markers for a more re.ned analysisof the disease gene region and identi.cation of candidate genesby direct cDNA selection, as well as prediction of gene functionfrom sequence information of these bacterial clones.  相似文献   

6.
To test the feasibility of using cloned NotI sites as markers for physical mapping, we have screened for cosmid clones spanning the NotI sites on human Chromosome (Chr) 16. Fluorescence in situ hybridization analysis of these clones confirms the previously reported cluster of NotI sites on 16p13.3. Methylation status of the cloned NotI sites on genomic DNA was established by hybridization of the cosmids to Southern blots containing EcoRI and EcoRI/NotI digest of genomic DNA. These results indicated that four of six clones included in our study can be used as linking clones for physical mapping. Two clones have NotI sites which are not cleavable in the cell lines tested. In one clone, the NotI site exists as an isolated rare-cutting restriction enzyme site, whereas in the other clone the NotI site appears to be island-related.  相似文献   

7.
The human Chromosome (Chr) 21q22.1 region contains several genes for cytokines and neurotransmitters and the gene for superoxide dismutase (mutant forms of which can cause familial amyotrophic lateral sclerosis). A region of approximately 5.8 Mb encompassing D21S82 and the glycinamide ribonucleotide transformylase (GART) loci was covered by overlapping YAC clones, which were contiguously ordered by clone walking with sequence-tagged site (STSs). A total of 76 markers, including 29 YAC end-specific STSs, were unambiguously ordered in this 5.8-Mb region, and the average interval between markers was 76 kb. Restriction maps of the YAC clones with rare-cutting enzymes were simultaneously prepared, and the restriction sites were aligned to obtain a consensus restriction map of the proximal region of the 21q22.1 band. The restriction map made from 44 overlapping YACs contains 54 physically assigned STSs. By integrating the consensus map of the adjacent 1.8-Mb region, we obtained a fine physical map spanning 6.5 Mb of human Chr 21q22.1. This map contains 24 precisely positioned end-specific STSs and 12 NotI-linking markers. More than 39 potential CpG islands were identified in this region and were found to be unevenly distributed. This physical map and the YACs should be useful as a reference map and as a resource for further structural analysis of the Giemsa-negative band (R-band) of Chr 21q22.1. Received: 1 September 1995 / Accepted: 21 November 1995  相似文献   

8.
A set of 22 551 unique human NotI flanking sequences (16.2 Mb) was generated. More than 40% of the set had regions with significant similarity to known proteins and expressed sequences. The data demonstrate that regions flanking NotI sites are less likely to form nucleosomes efficiently and resemble promoter regions. The draft human genome sequence contained 55.7% of the NotI flanking sequences, Celera’s database contained matches to 57.2% of the clones and all public databases (including non-human and previously sequenced NotI flanks) matched 89.2% of the NotI flanking sequences (identity ≥90% over at least 50 bp, data from December 2001). The data suggest that the shotgun sequencing approach used to generate the draft human genome sequence resulted in a bias against cloning and sequencing of NotI flanks. A rough estimation (based primarily on chromosomes 21 and 22) is that the human genome contains 15 000–20 000 NotI sites, of which 6000–9000 are unmethylated in any particular cell. The results of the study suggest that the existing tools for computational determination of CpG islands fail to identify a significant fraction of functional CpG islands, and unmethylated DNA stretches with a high frequency of CpG dinucleotides can be found even in regions with low CG content.  相似文献   

9.
Rat trophoblast giant cells each contain at least 100 times more genomic DNA per nucleus than diploid cells. This unusual phenomenon appears to be of interest in relation to the molecular mechanism of cell differentiation and gene expression in the placenta. In the present study, we analyzed the CpG islands of trophoblast giant cells by restriction landmark genomic scanning (RLGS) using the methylation-sensitive landmark enzymes, Not I and Bss HII. More than 1,000 and 1,900 spots were detected by RLGS using Not I and Bss HII, respectively, in the placental junctional zone, where more than 90% of genomic DNA is present in the cells with higher DNA content. Of these, 97% (1,009 spots) and 99% (1,911 spots) of the spots found in the junctional zone showed an identical pattern and identical intensity with those of diploid cell controls, for which genomic DNA was extracted from the labyrinth zone and maternal kidney. Therefore, the giant cells are basically polyploid. More importantly, 24 tissue-specific spots were detected by RLGS using Not I. Subsequent cloning and sequencing of four typical spots of the genomic DNA confirmed that these DNA fragments contained abundant CpG dinucleotides and showed characteristics of CpG islands. Of these 24 spots, there were ten spots specific for the placenta, and three of them were specific for the junctional zone, indicating that methylation status of CpG islands in the placental tissue differed between the junctional zone and labyrinth zone. These results suggest that multiple rounds of endoreduplication and modification of CpG islands by cytosine methylation occur during the differentiation process of giant cells. Dev. Genet. 22:132–140, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Restriction landmark genomic scanning (RLGS) is a method forvisualizing restriction landmarks, employing direct labelingof restriction sites of genomic DNA and high-resolution two-dimensionalelectrophoresis. We determined the conditions for both the firstand second dimensions of RLGS that define all of the restrictionfragments which carry the NotI landmark. Using this system,we determined the number of cleavable NotI sites of genomicDNA from the mouse kidney (C57BL/6) and from the human placenta.The mouse and human genomes were cleaved at 2,380±80sites (4,760±160 spots) and 3,240±110 sites (6,480±220spots), respectively with NotI.  相似文献   

11.
NotI linking clones contain sequences flanking NotI recognition sites and were previously shown to be tightly associated with CpG islands and genes. To directly assess the value of NotI clones in genome research, high density grids with 50 000 NotI linking clones originating from six representative NotI linking libraries were constructed. Altogether, these libraries contained nearly 100 times the total number of NotI sites in the human genome. A total of 3437 sequences flanking NotI sites were generated. Analysis of 3265 unique sequences demonstrated that 51% of the clones displayed significant protein similarity to SWISSPROT and TREMBL database proteins based on MSPcrunch filtering with stringent parameters. Of the 3265 sequences, 1868 (57.2%) were new sequences, not present in the EMBL and EST databases (similarity  90%). Among these new sequences, 795 (24.3%) showed similarity to known proteins and 712 (21.8%) displayed an identity of >75% at the nucleotide level to sequences from EMBL or EST databases. The remaining 361 (11.1%) sequences were completely new, i.e. <75% identical. The work also showed tight, specific association of NotI sites with the first exon and suggest that the so-called 3′ ESTs can actually be generated from 5′-ends of genes that contain NotI sites in their first exon.  相似文献   

12.
EagI and NotI linking libraries were prepared in the lambda vector, EMBL5, from the mouse-human somatic cell hybrid 1W1LA4.9, which contains human chromosomes 11 and Xp as the only human component. Individual clones containing human DNA were isolated by their ability to hybridise with total human DNA and digested with SalI and EcoRI to identify the human insert size and single-copy fragments. The mean (± SD) insert sizes of the EagI and NotI clones were 18.3 ± 3.2 kb and 16.6 ± 3.6 kb, respectively. Regional localisation of 66 clones (52 EagI, 14 NotI) was achieved using a panel of 20 somatic cell hybrids that contained different overlapping deletions of chromosomes 11 or Xp. Thirty-nine clones (36 EagI, 3 NotI) were localised to chromosome 11; 17 of these were clustered in 11q13 and another nine were clustered in 11q14–q23.1. Twenty-seven clones (16 EagI, 11 NotI) were localised to Xp and 10 of these were clustered in Xp11. The 66 clones were assessed for seven different microsatellite repetitive sequences; restriction fragment length polymorphisms for five clones from 11q13 were also identified. These EagI and NotI clones, which supplement those previously mapped to chromosome 11 and Xp, should facilitate the generation of more detailed maps and the identification of genes that are associated with CpG-rich islands. Received: 27 December 1995 / Revised: 30 January 1996  相似文献   

13.
More than 50% of mammalian genes are associated with CpG islandsand thus they serve as a good gene marker. We have devised asimple method to scan large pieces of native or cloned genomicDNA for CpG islands. The method is based on the presence ofmultiple Hpa II and Hha I sites in CpG islands, at a frequency30 times higher than in the rest of the genome. The steps includecomplete digestion of DNA with a rare-cutting restriction endonuclease(to produce large fragments with defined ends), partial digestionwith Hpa II and Hha I, and subsequent Southern hybridizationwith an end probe. This identifies a CpG island as a clusterof sub-bands and, based on their electrophoretic mobility, onecan immediately locate the island relative to the ends. Formany vectors, universal probes flanking the cloning site areavailable, enabling the simultaneous analysis of a large numberof samples. We demonstrated the usefulness of the method byanalyzing known CpG islands in native genomic DNA and lambda,cosmid and P1 clones, and by isolating two novel transcribedislands from anonymous cosmid clones. Our method is quick, inexpensive,and can detect CpG islands with few or even no rare-cutter sites.  相似文献   

14.
Chromosome 22q11 contains a large number of interesting loci, including genes associated with cancer and developmental defects. The region is also the site of the lambda immunoglobulin variable and constant regions and the BCR, γ-glutamyl transpeptidase, and GGT-like activity multigene families. Because of the complexities associated with mapping highly related gene families, we have examined the utility of mapping large areas of DNA using a defined approach. A total of 21 complete NotI sites from band q1 l were cloned and ordered into six noncontiguous clusters of sites using a combination of somatic cell hybrid panels, NotI jumping and linking libraries, and fluorescence in situ hybridization. The largest cluster spanned an estimated 2 Mb of NotI fragments, the smallest 115 kb. Approximately 3.5 Mb of band q11 could be examined for rearrangements in NotI restriction enzyme fragments. A number of conserved sequences, two genes, and a minimum of two families of related sequences were identified adjacent to NotI sites.  相似文献   

15.
To help in isolating the genes involved in Down syndrome, wesought CpG islands in 4 Mb cosmid/PAC contigs spanning mostof the 21q.22.2 band using seven rare cutting enzymes. A strikingfeature was observed upstream of hSIM2 where at least 41 rare-cuttingsites were clustered within a 20-kb region. To investigate thestructure of the cluster, a cosmid containing hSIM2 was submittedto shotgun sequencing. Sequence analysis revealed that the clusterwas a long CpG island extending 19, 128 nucleotides which includesin the first and second exons of hSIM2. Taken together withour observation in which the CpG islands were concentrated within1.2 Mb around hSIM2, we propose that this region functions asan R-band, and the cluster provides a unique element for markingof DNA for the spatial and temporal expression of the hSIM2locus.  相似文献   

16.
Effective procedures have been developed for constructing NotI linking libraries starting from chromosome-specific genomic libraries. Fifteen different single copy and two rDNA NotI linking clones from human chromosome 21 were identified in two libraries. Their chromosomal origin was confirmed, and regional location established using hybrid cell panels. Hybridization experiments with these probes revealed pairs of genomic NotI fragments, each ranging in size from less than 0.05 to 4.0 Mb. Many fragments displayed cell type variation. The total size of the NotI fragments detected in a human fibroblast cell line (GM6167) and mouse hybrid cell containing chromosome 21 as its only human component (WAV17) were approximately 32 and 34 Mb, respectively. If these fragments were all non-overlapping, this would correspond to about 70% of the 50-Mb content estimated for the whole chromosome. The linking clones will be enormously useful in the subsequent construction of a NotI restriction map of this chromosome. Characterization of these clones indicates the presence of numerous additional sites for other enzymes that recognize sequences containing CpG. Thus most NotI linking clones appear to derive from CpG islands and probably identify the 5' end of genes.  相似文献   

17.
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness in industrialized countries. A locus for juvenile-onset POAG,GLC1A,has been mapped to 1q21–q31 in a 9-cM interval. With recombinant haplotypes, we have now reduced theGLC1Ainterval to a maximum of 3 cM, between theD1S452/NGA1/D1S210andNGA5loci. These loci are 2.8 Mb apart on a 4.7-Mb contig that we have completed between theD1S2851andD1S218loci and that includes 96 YAC clones and 48 STSs. The newGLC1Ainterval itself is now covered by 25 YACs, 30 STSs, and 16 restriction enzyme site landmarks. The lack of aNotI site suggests that the region has few CpG islands and a low gene content. This is compatible with its predominant cytogenetic location on the 1q24 G-band. Finally, we have excluded important candidate genes, including genes coding for three ATPases (ATP1B1, ATP2B4, ATP1A2), an ion channel (VDAC4), antithrombine III (AT3), and prostaglandin synthase (PTGS2). Our results provide a basis to identify theGLC1Agene.  相似文献   

18.
Single copy probes derived from CpG-rich island clones fromEag I andNot I linking libraries and nine rare-cutter restriction endonucleases were used to investigate the methylation status of CpG-rich islands on the inactive and active X chromosomes (Chr) of the mouse. Thirteen of the 14 probes used detected CpG-rich islands in genomic DNA. The majority of island CpGs detected by rare-cutter restriction endonucleases were methylated on the inactive X Chr and unmethylated on the active X Chr, but some heterogeneity within the cell population used to make genomic DNA was detected. The CpG-rich islands detected by two putative pseudoautosomal probes remained unmethylated on both the active and inactive X Chrs. Otherwise, distance from the X Chr inactivation center did not affect the methylation profile of CpG-rich islands. We conclude that methylation of CpG-rich islands is a general feature of X Chr inactivation.  相似文献   

19.
Using nucleotide sequences from jumping and linking NotI libraries of human chromosome 3, 94 NotI-STS markers for 72 individual NotI clones were developed. The positions of the NotI-STS markers and their order on the chromosome were determined by a combination of RH-mapping (our data), contig mapping, cytogenetic mapping, and in silico mapping. Comparison of NotI-STS DNAs with human genome sequences revealed two gaps in the regions 3p21.33 (marker NL1-256) and 3p21.31 (NL3-005), and a segmental duplication. Identical DNA fragments were found in the regions 12q and 3p22–21.33 (marker NL3-007). In the 3q28–q29 region (marker NLM-084), a fragment was detected whose identical copies were also present on chromosomes 1, 2, 15, and 19. For 69 NotI-STSs, significant homologies to nucleotide sequences of 70 genes and 2 cDNAs were detected (with homologies in NotI-STS 5′- and 3′-terminal sequences being taken into account). An association between NotI-STSs and genes is confirmed by a strong correlation between the density distributions of genes and NotI-STS markers on the map of human chromosome 3. Our results indicate that the NotI map may be regarded as a gene map of human chromosome 3. Thus, NotI-STSs are applicable as gene markers.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 687–701.Original Russian Text Copyright © 2005 by Sulimova, Rakhmanaliev, Klimov, Kompaniytsev, Udina, Zabarovsky, Kisselev.  相似文献   

20.
We investigated the changes in the methylation patterns of CpGislands associated with blast formation of human peripheralblood lymphocytes activated by anti-CD3 and interleukin-2 (IL-2),using restriction landmark genomic scanning with a methylation-sensitiverestriction enzyme (RLGS-M) system. Of about 2,100 Not I spot/lociwhich were analyzed, only 10 showed changes, whereas drasticchanges have been observed in cases of malignant and SV40 transformation.These changes were highly reproducible for samples from boththe same and different individuals. Even the timing of the changesafter cultivation was the same. Thus, we concluded that at leastthe genomic DNA methylation state in vivo was essentially retainedin T blast cells activated in vitro by induction with IL-2 andanti-CD3, which are commonly used in biological experimentsas well as clinical diagnosis and therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号