首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the effect of the antibiotic neomycin on the intestinal epithelium, d-glucose was used as a probe molecule and its transport into rabbit brush border membrane vesicles was measured by a rapid filtration method. Treatment of the epithelium with neomycin sulfate prior to the preparation of the brush border membrane enhanced the d-glucose uptake, whereas neutral N-acetylated neomycin did not. This action of neomycin was related to its polycationic character and not to its bactericidal action. No significant difference could be demonstrated between the protein content or disaccharidase-specific activities of the brush border fractions from treated or non-treated intestines. Electrophoretic protein patterns of SDS-solubilized membrane were not significantly different after neomycin treatment. To gain more information on the mechanism involved in the stimulation of d-glucose transport, experiments were conducted on phosphatidyl glycerol artificial membranes and the results compared with those obtained with brush border membrane. At a concentration of 10?7 M, neomycin decreased the nonactin-induced K+ conductance by a factor of approx. 100. The membrane conductance was linearly dependent on the neomycin concentration and the conductance in 10?2 M KCl was 10 times that in 10?3 M KCl. The valence of neomycin was estimated, from the slope of these curves, to be between 6 and 4. In contrast, acetylated neomycin had no effect on the nonactin-induced K+ membrane conductance. Therefore, the effect of neomycin on artificial membrane is related to its 4 to 6 positive charges. It is proposed that the stimulation of sugar transport in brush border membrane is related to screening of the membrane negative charges by the positively-charged neomycin. Accumulation of anions at the membrane surface then occurs and their diffusion into the intravesicular space would increase the transmembrane potential which, in turn, stimulates the entry of d-glucose.  相似文献   

2.
The Na+-dependent transport of D-glucose was studied in brush border membrane vesicles isolated from the rabbit renal cortex. The presence of a Na+ gradient between the external incubation medium and the intravesicular medium induced a marked stimulation of D-glucose uptake. Accumulation of the sugar in the vesicles reached a maximum and then decreased, indicating efflux. The final level of uptake of the sugar in the presence of the Na+ gradient was identical with that attained in the absence of the gradient, suggesting that equilibrium was established. At the peak of the overshoot the uptake of D-glucose was more than 10-fold the equilibrium value. These results suggest that the imposition of a large extravesicular to intravesicular gradient of Na+ effects the transient movement of D-glucose into renal brush border membranes against its concentration gradient. The stimulation of D-glucose uptake into the membranes was specific for Na+. The rate of uptake was enhanced with increased concentration of Na+. Increasing Na+ in the external medium lowered the apparent Km for D-glucose. The Na+ gradient effect on D-glucose transport was dissected into a stimulatory effect when Na+ and sugar were on the same side of the membrane (cis stimulation) and an inhibitory effect when Na+ and sugar were on opposite sides of the membrane (trans inhibition). The uptake of D-glucose, at a given concentration of sugar, reflected the sum of the contributions from a Na+-dependent transport system and a Na+-independent system. The relative stimulation of D-glucose uptake by Na+ decreased as the sugar concentration increased. It is suggested, however, that at physiological concentrations of D-glucose the asymmetry of Na+ across the brush border membrane might fully account for uphill D-glucose transport. The physiological significance of the findings is enhanced additionally by observations that the Na+-dependent D-glucose transport system in the membranes in vitro possessed the sugar specificities and higg phlorizin sensitivity characteristic of more intact preparations. These results provide strong experimental evidence for the role of Na+ in transporting D-glucose across the renal proximal tubule luminal membrane.  相似文献   

3.
A comparison of L-valine and D-glucose transport was carried out with vesicles of plasma membrane isolated either from the luminal (brush border) or from the contra-luminal (basolateral) region of small intestinal epithelial cells. The existence of transport systems for both non-electrolytes was demonstrated by stereospecificity and saturability of uptake, as well as tracer coupling. Transport of L-valine and D-glucose differs markedly in the two types of plasma membrane with respect to stimulation by Na+. The presence of Na+ stimulated initial L-valine and D-glucose uptake in brush border, but not in basolateral membrane. Moreover, an electro-chemical Na+ gradient, oriented with the lower potential on the inside, supported accumulation of the non-electrolytes above medium concentration only in the brush border membrane. L-Valine and D-glucose transport also were saturated at lower concentrations in brush border (10-20 mM) than in basolateral plasma membranes (30-50 mM). A third difference between the two membranes was found in the effectiveness of known inhibitors of D-glucose transport. In brush border membranes phlorizin was more potent than phloretin and 2', 3', 4'-trihydroxy-4-methoxy chalcone and cytochalasin B did not inhibit at all. In contrast, with the basolateral plasma membranes the order of potency was changed to phloretin = 2',3',4'-trihydroxy-4-methoxy chalcone greater than cytochalasin B greater than phlorizin. These results indicate the presence of different types of transport systems for monosaccharides and neutral amino acids in the luminal and contra-luminal region of the plasma membrane. Active transepithelial transport can be explained on the basis of the different properties of the non-electrolyte transport systems in the two cellular regions and an electro-chemical Na+ gradient that is dependent on cellular metabolism.  相似文献   

4.
Tanii H  Horie T 《Life sciences》1999,64(15):1259-1264
Retinylpalmitate (200 IU/kg body weight) was administered intraperitoneally to rats once daily for 4 days. Brush border membrane vesicles (BBMVs) were prepared from small intestinal epithelium cells from along the crypt-villus axis. D-glucose uptake by BBMVs was examined under the inwardly directed Na+ gradient. The D-glucose uptake by BBMVs from the villus-tip and mid-villus cells of retinylpalmitate treated rats was significantly larger than that of control (corn oil treated) rats, respectively. Thus, retinol treatment of rats promoted the D-glucose transport in small intestinal brush border membrane. Interestingly, the enhancement of D-glucose transport was more prominent in villus-tip and mid-villus than in lower villus.  相似文献   

5.
The effect of dietary hydrogenated fat (Indian vanaspati) high in trans fatty acids (6 en%) on lipid composition, fluidity and function of rat intestinal brush border membrane was studied at 2 and 8 en% of linoleic acid. Three groups of weanling rats were fed rice-pulse based diet containing 10% fat over a ten week period: Group I (groundnut oil), Group II (vanaspati), Group III (vanaspati + safflower oil). The functionality of the brush border membrane was assessed by the activity of membrane bound enzymes and transport of D-glucose and L-leucine. The levels of total cholesterol and phospholipids were similar in all groups. The data on fatty acid composition of membrane phospholipids showed that, at 2 en% of linoleic acid in the diet, trans fatty acids lowered arachidonic acid and increased linoleic acid contents indicating altered polyunsaturated fatty acid metabolism. Alkaline phosphatase activity was increased while the activities of sucrase, gamma-glutamyl transpeptidase and transport of D-glucose and L-leucine were not altered by dietary trans fatty acids. However at higher intake of linoleic acid in the diet, trans fatty acids have no effect on polyunsaturated fatty acid composition and alkaline phosphatase activity of intestinal brush border membrane. These data suggest that feeding dietary fat high in trans fatty acids is associated with alteration in intestinal brush border membrane polyunsaturated fatty acid composition and alkaline phosphatase activity only when the dietary linoleic acid is low.  相似文献   

6.
The effect of semistarvation on small intestinal transport of D-glucose, L-valine, and NaCl was studied in an in vitro system of isolated rat brush border membrane vesicles. Whereas semistarvation enhanced the transport rate for L-valine by 19-29%, there was no change in D-glucose transport. When energy in the form of a NaSCN gradient was supplied to the membrane vesicles prepared from semistarved animals, L-valine was concentrated to a greater extent than those from well-fed animals. Strain differences were observed in the manner semistarvation affected NaCl transport across the brush border membrane. Semistarvation increased the NaCl transport rate by a factor of 3.5 in one rat strain and not at all in another. These results provide a partial explanation for the cellular basis of elevated neutral amino acid absorption by the small intestine in semistarvation.  相似文献   

7.
The effect of semistarvation on small intestinal transport of D-glucose, L-valine, and NaCl was studied in an in vitro system of isolated rat brush border membrane vesicles. Whereas semistarvation enhanced the transport rate for L-valine by 19-29%, there was no change in D-glucose transport. When energy in the form of a NaSCN gradient was supplied to the membrane vesicles prepared from semistarved animals, L-valine was concentrated to a greater extent than those from well-fed animals. Strain differences were observed in the manner semistarvation affected NaCl transport across the brush border membrane. Semistarvation increased the NaCl transport rate by a factor of 3.5 in one rat strain and not at all in another. These results provide a partial explanation for the cellular basis of elevated neutral amino acid absorption by the small intestine in semistarvation.  相似文献   

8.
The energetics of the Na+-dependent transport of D-glucose into osmotically active membrane vesicles, derived from the brush borders of the rabbit renal proximal tubule, was studied by determining how alterations in the electrochemical potential of the membrane induced by anions, ionophores, and a proton conductor affect the uptake of the sugar. The imposition of a large NaCl gradient (medium is greater than vesicle) resulted in the transient uptake of D-glucose into brush border membranes against its concentration gradient. In the presence of Na+ salts of isethionate or sulfate, both relatively impermeable anions, there was no accumulation of D-glucose above the equilibrium value. With Na+ salts of two highly permeable lipophilic anions, NO3- and SCN-, the transient overshoot was enhanced relative to that with Cl-. With Na+ salts whose mode of membrane translocation is electroneutral, i.e. acetate, bicarbonate, and phosphate, no overshoot was found. These findings suggest that only anions which penetrate the brush border membrane and generate an electrochemical potential, negative on the inside, permit the uphill Na+-dependent transport of D-glucose.  相似文献   

9.
The effect of ethanol on sodium and glucose transport in rabbit renal brush border membrane vesicles was examined. When membrane vesicles were preincubated in the presence of ethanol the sodium-dependent D-glucose uptake was significantly inhibited. This effect, as suggested by O'Neill et al. (1986) FEBS Lett. 194, 183-188, may be due to a faster collapse of the Na+ gradient. As a matter of fact, the amiloride-insensitive sodium pathway was increased by ethanol in our brush border membrane preparation. However, sodium/D-glucose cotransport was inhibited by ethanol, although to a lesser degree, also in the absence of a sodium gradient. In addition, ethanol inhibited glucose-dependent sodium uptake, suggesting that a direct interaction with the translocator was involved. This conclusion was also supported by kinetic measurements showing a decrease of Vmax and an increase in Km for glucose in membrane vesicles treated with ethanol. Moreover, ethanol influenced the interaction of phlorizin with the cotransporter: uptake experiments performed in the presence of the two inhibitors demonstrated that phlorizin and ethanol behave as not mutually exclusive inhibitors of D-glucose transport. These data indicate that in rabbit renal brush border membranes ethanol not only affects the 'passive pathway', i.e. the sodium permeability, but it also directly interferes with carrier functions.  相似文献   

10.
The influence of amino acids on D-glucose transport was studied in isolated vesicles of brush border membrane from rat small intestine. It is demonstrated that: (a) Uptake of D-glucose by the membranes is inhibited by simultaneous flow of L- and D-alanine into the vesicles. (b) Addition of L-alanine to membranes pre-equilibrated with D-glucose causes efflux of this sugar. (c) The influence of amino acids on D-glucose is dependent on the presence of Na+. (d) The ionophorous agents monactin and valinomycin are able to prevent the transport interaction of D-glucose and amino acids. Monactin is effective in the presence of Na+ without further addition of other cations, while valinomycin is effective only with added K+, in accordance with the known specificity of these antibiotics. (e) The inhibitory effect increases with L-alanine concentration up to about 50 mM after which it levels off. The experiments provide evident that the Na+-dependent sugar and amino acid fluxes across the brush border membrane are coupled electrically.  相似文献   

11.
The transport of the bile salt, glycodeoxycholate, was studied in vesicles derived from rat jejunal and ileal brush border membranes using a rapid filtration technique. The uptake was osmotically sensitive, linearly related to membrane protein and resembled D-glucose transport. In ileal, but not jejunal, vesicles glycodeoxycholate uptake showed a transient vesicle/medium ratio greater than 1 in the presence of an initial sodium gradient. The differences between glycodeoxycholate uptake in the presence and absence of a Na+ gradient yielded a saturable transport component. Kinetic analysis revealed a Km value similar to that described previously in everted whole intestinal segments and epithelial cells isolated from the ileum. These findings support the existence of a transport system in the brush border membrane that: (1) reflects kinetics and characteristics of bile salt transport in intact intestinal preparations, and (2) catalyzes the co-transport of Na+ and bile salt across the ileal membrane in a manner analogous to D-glucose transport.  相似文献   

12.
Distinction of three types of D-glucose transport systems in animal cells   总被引:6,自引:0,他引:6  
Immunoblotting of plasma membrane fractions from rat kidney cortex with antibody to human erythrocyte glucose transporter showed a single major cross-reacting material of 48K in basolateral membrane fractions possessing a facilitated diffusion system for D-glucose, but not in brush border membrane fractions which have a Na-dependent active transport system. Cytochalasin B inhibited D-glucose uptake in basolateral membrane vesicles but not in brush border vesicles. Cross-reacting materials of 44-55K were detected in several animal cells exhibiting facilitated diffusion systems, including a hormone dependent system. These results indicate molecular difference between glucose transporters of facilitated diffusion systems and active transport systems.  相似文献   

13.
The human duodenum actively transports L-leucine and D-glucose under Na+ gradient conditions as demonstrated by uptake studies using brush border membrane vesicles from organ donor duodenum. Brush border membrane vesicles formed from peroral duodenal biopsies likewise demonstrate Na+ dependent concentrative uptake of D-glucose and L-leucine. This is the first demonstration of active transport processes in human duodenum. A simple microvesiculation method to form these vesicles is described as well as its potential application to clinical medicine in studying diseases of defective intestinal transport.  相似文献   

14.
L-Carnitine transport by rat renal brush border membrane vesicles was stimulated by a Na+ gradient (extravesicular greater than intravesicular). Total carnitine entry was 2.7 and 3.2 times higher at 15 S in the presence of a 100 mM NaCl gradient than when the vesicles were incubated isoosmotically in buffered 100 mM KCl or buffered mannitol, respectively. Specific carnitine transport (total entry minus contribution from diffusion) was stimulated 3.6- and 5.7-fold, respectively. An "overshoot" was observed for total carnitine entry in the presence of a Na+ gradient but not in the presence of a K+ gradient or in the absence of an ion gradient. L-Carnitine transport was saturable. KT and Vmax for total carnitine transport were 0.11 mM and 11.6 pmol S-1 mg protein-1, respectively, and for Na+-gradient-dependent carnitine transport, 0.055 mM and 5.09 pmol S-1 mg protein-1, respectively. The transport process was structure-specific for a quaternary nitrogen and carboxyl groups attached by a 4- to 6-carbon chain, but without other charged functional groups. Other evidence for a carrier-mediated process included trans-stimulation of transport by intravesicular carnitine and a peak of activity at near physiological temperature. Kinetic data derived from this study, coupled with data from previous physiological studies from this laboratory, suggests that carnitine transport by the brush border membrane is not limiting for carnitine reabsorption. Dietary carnitine (1% of diet for 10 days) reduced by 52% the rate of carnitine transport across the brush border membrane in vitro, without affecting rates of D-glucose, L-lysine, L-glutamic acid, or L-alanine transport. Down-regulation of carnitine transport may prevent excessive or toxic accumulation of L-carnitine in renal tubular cells exposed to high extracellular carnitine concentrations.  相似文献   

15.
To identify protein components of the intestinal cholesterol transporter, rabbit small intestinal brush border membrane vesicles were submitted to photoaffinity labeling using photoreactive derivatives of 2-azetidinone cholesterol absorption inhibitors. An integral membrane protein of M(r) 145.3+/-7.5 kDa was specifically labeled in brush border membrane vesicles from rabbit jejunum and ileum. Its labeling was concentration-dependently inhibited by the presence of cholesterol absorption inhibitors whereas bile acids, D-glucose, fatty acids or cephalexin had no effect. The inhibitory potency of 2-azetidinones to inhibit photolabeling of the 145 kDa protein correlated with their in vivo activity to inhibit intestinal cholesterol absorption. These results suggest that an integral membrane protein of M(r) 145 kDa is (a component of) the cholesterol absorption system in the brush border membrane of small intestinal enterocytes.  相似文献   

16.
Both the presence of sodium and of an electrical potential difference across the membrane have been found to be necessary in order to achieve optimal D-glucose-protectable phlorizin binding to brush border membranes from rabbit small intestine. The effect of delta approximately muNa on phlorizin binding shows a close similarity to that on D-glucose transport, confirming that phlorizin is indeed bound to the D-glucose transporting protein. Possible modulations of binding by a transmembrane potential are discussed on the basis of some models.  相似文献   

17.
A procedure for preparing highly purified brush border membranes from rabbit kidney cortex using differential and density gradient centrifugation is described. Brush border membranes prepared by this procedure were substantially free of basal-lateral membranes, mitochondria, endoplasmic reticulum and nuclear material as evidenced by an enrichment factor of less than 0.3 for (Na+ + K+)-ATPase, succinate dehydrogenase, NADPH-cytochrome c reductase and DNA. Alkaline phosphatase was enriched ten fold indicating that the membranes were enriched at least 30 fold with respect to other cellular organelles. The yield of brush border membranes was 20%. Transport of D-glucose by the membranes was identical to that previously reported except that the Arrhenius plot for temperature dependence of transport was curvilinear (EA = 11.3--37.6 kcal/mol) rather than biphasic. Transport of p-aminohippuric acid and uric acid were increased by the presence of NaCl, either gradient or preequilibrated. However, no overshoot was obtained in the presence of a NaCl gradient, and KCl and LiCl also produced equivalent stimulation of transport suggesting a nonspecific ionic strength effect. Uptakes of p-aminohippuric acid and uric acid were not saturable, and were increased markedly by reducing the pH from 7.5 to 5.6. Probenecid (1 mM) reduced p-aminohippuric acid and uric acid (50 muM) uptake by 49% and 21%, respectively. We conclude that the uptake of uric acid and p-aminohippuric acid by renal brush border membranes of the rabbit occurs primarily by a simple solubility-diffusion mechanism.  相似文献   

18.
This review contrasts the glucose transport mechanisms at opposing surfaces of the renal proximal convoluted tubule: the Na+-dependent D-glucose transporter localized at the brush border membrane and the Na+-independent transporter localized at the basolateral surface. The two sugar transport mechanisms are discussed from the point of view of their specificity, kinetic, and regulatory behaviors. Recent results focussing on molecular characterization of these different carrier proteins are also described, including some newer information on purification of the Na+-dependent glucose carrier from the brush border membrane.  相似文献   

19.
We have worked out a simplification of the procedure described by Schmitz et al. (Biochim. Biophys. Acta (1973) 323, 98--112) for the preparation of brush border membranes from small intestine. The procedure ultimately adopted is simple, rapid, does not necessarily require scraping and can be started from fresh or frozen material. It can be scaled up easily, allowing a quick production of large amounts of brush border membrane vesicles. These vesicles prove to be excellently suited for transport studies, as suggested by our measurements of D-glucose transport. Using these vesicles, the mode of choline transport across the brush border membrane was also investigated. Choline transport was found to occur by a saturable component with a Km of 83 +/- 4 micrometer (at 20 degrees C) and by a non-saturable component. It is independent of the presence of Na+ and appears to be non-electrogenic.  相似文献   

20.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号