首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mast cells dispersed from human skin and purified by density-gradient centrifugation were cytotoxic toward the mouse fibrosarcoma cell line WEHI-164. Skin mast cells were not cytotoxic toward the NK cell-sensitive cell line K562. Killing of WEHI-164 occurred over a prolonged (greater than 18 h) period of incubation with mast cells and was effectively inhibited by polyclonal antibodies and mAb against TNF-alpha suggesting that this cytokine plays an important role in mast cell-mediated cytotoxicity. Whereas lysates of rat peritoneal mast cells exhibited cytotoxicity toward WEHI-164, this was not found with lysates of unstimulated skin mast cells suggesting that TNF-alpha is not stored preformed in the latter. Killing of WEHI-164 cells by skin mast cells was enhanced by anti-IgE and there was a significant correlation between histamine release and cytotoxicity after activation with this stimulus. We conclude that human skin mast cells are a potential source of TNF-alpha and suggest that these cells, particularly after activation, might contribute to the synthesis of this multifunctional cytokine in inflammatory sites.  相似文献   

2.
We have directly demonstrated that macrophages present within solid EMT6 mammary tumors (of BALB/c origin) produce TNF-alpha (TNF). These tumor-associated macrophages lysed WEHI-164, a TNF-sensitive cell line, very efficiently. This cytotoxicity was abrogated in the presence of anti-TNF antisera. In contrast, EMT6 cells, the tumor from which the macrophages were obtained, were not effectively lysed by the macrophages and were 100-fold less sensitive to lysis by recombinant mouse TNF. Thus, marked heterogeneity exists among tumors regarding sensitivity to TNF-mediated cytotoxicity. Similarly, macrophages which infiltrate into EMT6 multicellular spheroids implanted into the peritoneal cavity as well as free cells within the cavity exhibited TNF-mediated cytotoxicity of WEHI-164 cells, but failed to lyse EMT6 cells. The kinetics of lysis by these cells was similar to that of recombinant mouse TNF.  相似文献   

3.
Recent studies have demonstrated that diphtheria toxin (DTX) also mediates target cell lysis, and the mechanism of cytotoxicity has many features similar to those of cytotoxicity mediated by TNF-alpha. Thus, we hypothesized that DTX and TNF-alpha, used in combination, may result in either additive or synergistic cytotoxic activity. This was examined on three human ovarian carcinoma cell lines chosen for their differing sensitivities to TNF-alpha and DTX, i.e., 222, which is sensitive to both TNF-alpha and DTX, 222TR, a TNF-alpha-resistant DTX-sensitive variant of 222, and SKOV-3, which is resistant to both DTX and TNF-alpha. The simultaneous use of DTX and TNF-alpha at suboptimal concentrations resulted in synergistic cytotoxic activity against all three lines tested, thus overcoming the TNF-alpha resistance of 222TR and the double resistance of SKOV-3. DNA fragmentation was observed in all three lines treated with DTX and TNF-alpha and occurred as early as 4 h after treatment. Cycloheximide, actinomycin D, or emetine, at concentrations causing greater than 90% protein synthesis inhibition, did not result in cytotoxicity alone or synergy with TNF-alpha, suggesting that synergy by DTX was not due to its ability to inhibit protein synthesis. The use of energy poisons and pH conditions that inhibit DTX-mediated cytotoxicity resulted in the abrogation of synergy. These findings show that the two cytotoxic agents TNF-alpha and DTX, when used at suboptimal concentrations, synergize in their cytotoxic activity against sensitive and resistant cell lines. Because the SKOV-3 cell line used here is also resistant to chemotherapeutic drugs, combination treatment with DTX and TNF-alpha may be beneficial in overcoming drug resistance.  相似文献   

4.
Tumor necrosis factor (TNF), lyses a range of sensitive tumor targets and has been shown to be the mediator of natural cytotoxic (NC) activity first described in our laboratory. In this report, we identify two thymic lymphoma cell lines which lyse the prototype NC target WEHI-164 and share characteristics of NC. R1.1E and L5178-27av lyse the WEHI-164 sarcoma in 18-hr 51Cr release assays via a TNF-dependent, non-MHC-restricted (R1.1E) mechanism although they do not constitutively produce TNF. NC- and TNF-resistant variants of WEHI-164 are resistant to lymphoma-mediated lysis. Expression of the ganglioside GD3 by the lymphomas correlates with their relative levels of lysis. Thus, GD3, which is known to have a role in T cell activation may be involved in recognition or triggering for TNF-dependent cell-mediated lysis.  相似文献   

5.
C Levrat  J W Larrick  S C Wright 《Life sciences》1991,49(23):1731-1737
We have studied TNF-induced changes in mitochondrial enzymes. One enzyme, succinate dehydrogenase (SDH), is specifically activated in TNF sensitive cells including U937 (human monocytic), WEHI-164 (murine fibrosarcoma), and ME-180 (human cervical carcinoma). SDH is activated by TNF concentrations which also cause cytolysis, however the enzyme activity is elevated several hours before maximum cytotoxicity is observed. In contrast, TNF does not activate SDH in TNF resistant variants derived from U937 and WEHI-164.  相似文献   

6.
OBJECTIVE: The susceptibility of two cell lines, WEHI-3B myelomonocytic leukaemia and its variant Ciprofloxacin-resistant WEHI-3B/CPX to undergo apoptosis induced by Ciprofloxacin was studied and compared. MATERIALS AND METHODS: Apoptosis was checked by measuring the DNA fragmentation and determining the ratio of apoptotic/necrotic cells. The relationship between the induction of apoptosis and G(1), S or G(2) block in the cell cycle has also been investigated and cytogenetical evaluation of chromosomal aberrations in both cell lines has been carried out. The regulation of expression of Bax and Bcl-2 was also checked by western blotting after Ciprofloxacin treatment. RESULTS: We observed that the resistance of the subline was caused by a small percentage of cells that underwent apoptosis during continuous exposure to Ciprofloxacin in comparison with the parental cell line, whereas the percentage of necrotic cells remained unchanged. The WEHI-3B cells showed a G(2) block and a higher degree of cytogenetic damage after drug exposure. The two cell lines expressed the same level of Bax and Bcl-2 following stimulation by Ciprofloxacin. Only in the resistant subclone, the ratio Bcl-2/Bax reversed in the anti-apoptotic gene expression. CONCLUSION: The resistance to ciprofloxacin observed is not related to mitochondrial function and although Bcl-2/Bax ratio behaviour does not fully explain the resistance of the WEHI3B/CPX subclone it is consistent with phenotypic character of resistance to CPX. The toxic effect on sensitive cells could be mediated by the cell cycle arrest whereas in the resistant clone, the prolonged G(2) phase could play a key role to favour cell cycle progression and proliferation.  相似文献   

7.
8.
Tumor growth in vivo selects for resistance to tumor necrosis factor   总被引:1,自引:0,他引:1  
The relationship between in vivo tumor growth and resistance to TNF in WEHI-164 cells has been examined. When a highly TNF-sensitive clone of WEHI-164 was grown in vivo in syngeneic mice it became resistant to rTNF such that a 4 to 5 log higher concentration of TNF was required to produce tumor lysis in vitro. When compared with an in vitro selected TNF-resistant variant, the in vivo selected line was significantly more tumorigenic. The resistant phenotype of both the in vivo and in vitro selected variants was stable in culture and both selected lines were also resistant to lysis by syngeneic spleen cells with natural cytotoxic activity. The parental clone and the two variants were equally sensitive to lysis by allo-CTL and expressed similar levels of MHC class I Ag. Resistance to TNF in the two variants was not a function of de novo production of TNF measured as supernatant TNF activity or TNF mRNA expression. These studies are the first to demonstrate that in vivo tumor growth results in resistance to TNF and therefore may have direct relevance to the efficacy of TNF in the treatment of human neoplasms.  相似文献   

9.
10.
11.
Summary This study has addressed the question of whether there may be some common mechanism underlying the induction or expression of acquired cytokine and drug resistance in a tumor cell line. This study employed the tumor-necrosis-factor(TNF)-sensitive U937 tumor cell line as a model system to determine if selection of a tumor cell variant for cytokine resistance would also result in drug resistance and vice versa. Variants were selected by culturing in the presence of purified recombinant TNF or a mixed-lymphokine-containing supernatant derived from concanavalin-A-stimulated peripheral blood lymphocytes. The resulting variants were resistant not only to TNF, but also to certain chemotherapeutic drugs. The variants were most resistant to colchicine and theVinca alkaloids, requiring drug concentrations 50- to 5000-fold higher to mediate levels of cytotoxicity comparable to that seen with the parental U937. The variants were moderately resistant to cycloheximide, actinomycin D, and mitomycin C. In contrast, these lines were relatively sensitive to doxorubicin or daunomycin. This phenomenon was not unique to U937 cells since we obtained a similar pattern of drug resistance by selecting TNF-resistant variants of the WEHI-164 tumor cell line. The cytokine-selected U937 variants were still lysed by NK cells, although they were somewhat less sensitive than the parental U937. Both variants were relatively resistant to lysis by activated macrophages, probably because of their TNF resistance. In an alternative selection procedure, U937 variants were derived by culturing in the presence of increasing concentrations of colchicine. The resulting variants were relatively resistant to TNF, providing further support for the existence of some common mechanism operating in induction or expression of acquired cytokine and drug resistance. The resistance mechanism apparently does not involve the P glycoprotein since the cytokine-selected U937 variants do not overexpress the mdr gene. This study has demonstrated that selection of TNF-resistant variants results in coexpression of a unique form of drug resistance that is characterized by resistance to microtubule-active drugs but not to the anthracycline antibiotics and is not associated with overexpression of the mdr gene.This work was supported by grant CA 47 669-01 awarded by the National Cancer Institute Nomenclature of variants: U9-LKR, U937 variant selected by lymphokines; U9-TR, U937 variant selected by tumor necrosis factor (TNF); WEHI-TR, WEHI-164 variant selected by TNF  相似文献   

12.
The effects of various concentrations of thymidine on DNA synthesis and deoxyribonucleoside triphosphate contents of a highly thymidine-sensitive cultured mouse lymphoma cell line (WEHI-7) and a relatively resistant mouse myeloma cell line (HPC-108) have been studied by 32P-labelling techniques. DNA synthesis in the myeloma cells was inhibited by thymidine at concentrations of 10(-3) M or greater, while DNA synthesis in the lymphoma cells was inhibited by concentrations 30-fold lower, consistent with the 25-fold difference between the two cell lines in sensitivity to growth inhibition by thymidine. Thymidine caused marked elevation of the dTTP and dGTP pools, slight elevation or no change in the dATP pool and a marked decrease in the dCTP pool in cells of both lines. The greater resistance of HPC-108 cells to thymidine inhibition was related to the finding that they normally contained a much higher concentration of dCTP than did the WEHI-7 cells. Pool size measurements on thymidine-treated (10(-4) M) cells of an additional seven sensitive lymphoma and six relatively resistant myeloma cell lines indicated that in all 15 lines studied, with one exception, a critical concentration of dCTP of about 32 nmol per ml of cell volume was required for the maintenance of normal rates of DNA synthesis. The dCTP content found normally in the lymphoma cells was only a little above this concentration. Amongst the myeloma lines, three contained similarly low levels of dCTP, but were more resistant to thymidine inhibition probably because of their inefficient production of dTTP from thymidine. Cells of the other four myeloma lines (including HPC-108) normally contained much higher dCTP concentrations. The mechanism of thymidine action was explained by reference to the known allosteric properties of ribonucleotide reductase.  相似文献   

13.
Tumor necrosis factor alpha (TNF-alpha) modulates various events through several different pathways. Many tumor cells are resistant to this cytokine. Pretreatment of these cells with actinomycin D enhances TNF-alpha-induced apoptosis. In the present study, we investigated the mechanism of this enhancement and whether or not the apoptosis of TNF-alpha-resistant cancer cells can be induced by the inhibition of Protein kinase C (PKC). When TNF-alpha was added after inhibition of PKC by H7, apoptosis was observed, and companied with the activation of nuclear factor kappa B (NF-kappaB). After the inhibition of protein kinase B (Akt) by LY294002 or p38 mitogen-activated protein kinase (p38MAPK) by SB203580, the addition of TNF-alpha did not cause apoptosis. However, after the inhibition of MAPK/extracellular signal-regulated kinase kinase 1/2 (MEK1/2) with U0126, apoptosis was observed when TNF-alpha was added. In the Western blotting analysis, phosphorylation of MEK1/2 occurred at 60 minutes after the addition of TNF-alpha. However, it was noted that after pretreatment with H7, a significant decrease in phosphorylated MEK1/2 was observed. The present findings suggest that MEK1/2 plays an important role in TNF-alpha-resistance in TNF-alpha-resistant B16 melanoma BL6 cells. Furthermore, it was found that MEK1/2 is more important than NF-kappaB, Akt, and p38MAPK in anti-apoptotic PKC signaling and that TNF-alpha-resistance can be overcome by inhibiting MEK1/2. These results suggest the possibility of development of a new anticancer drug treatment.  相似文献   

14.
The studies on the inhibitory effect exerted by Cholera Toxin (CT) on cell growth and proliferation indicate a remarkable heterogeneity of cell response suggesting that the inhibition represents the final event of many different ways or mechanisms . After CT binding, cAMP accumulation may not occur (as in L1210 leukemia cells) or, when occurring (as in SR-4987 stromal cells), may not be coupled with the antiproliferative effect of CT. In WEHI-3B cells CT binds a Gal-GalNac-GM1b receptor and the anticlonogenic effect of CT seems correlated with cAMP accumulation.To demonstrate the central role of cAMP in WEHI-3B cells, starting from the sensitive cell strain we selected and established a clone of WEHI-3B resistant to CT. This revertant clone (WEHI-3B/CT/REV) is currently cultured in the absence of CT and in the proliferation assay shows a dramatic resistance (>46,000 than the parental cells). Stimulation of WEHI-3B/CT/REV cells by cholera toxin failed to enhance cAMP and the ganglioside-CT binding studied on Thin Layer Chromatography (TLC) blots showed that the resistant cells lost the spot correspondent to the migration of Gal-GalNac-GM1b ganglioside. Both the lines respond at the same level to the adenylate cyclase stimulation by forskolin and the incorporation of GM1a did not decrease the resistance of WEHI-3B/CT/REV. These data confirm that Gal-GalNac-GM1b is the most important functional receptor for CT in WEHI-3B cells able to transduce the signal by enhancing cAMP which in turn inhibits cell proliferation (probably by cAMP dependent protein kinase activation). Our study describes the first cell line resistant to CT originated from a susceptible parental strain and provides a new interesting cell model for studying the cAMP dependent mechanisms involved in cell growth regulation.  相似文献   

15.
WEHI-3B myelomonocytic leukaemia cells secrete a haemopoietic cell growth factor (HCGF) which facilitates the proliferation and development of multipotential stem cells and committed progenitor cells. Several cloned, nonleukaemic cell lines (FDC-P cells) are absolutely dependent on HCGF and die in the absence of it. In these cell lines, factor dependence is associated with the ability of HCGF to increase glucose uptake, thereby controlling glycolytic flux and intracellular ATP levels. We have now investigated the effects of HCGF on glucose uptake in WEHI-3B cells. At 20 degrees C 2-deoxyglucose uptake could be stimulated by the addition of HCGF to the extracellular medium. L-glucose uptake was markedly lower than 2-deoxyglucose uptake and did not respond to the addition of HCGF. At 37 degrees C no HCGF stimulation of 2-deoxyglucose uptake was found. However, at this temperature HCGF release from WEHI-3B cells was markedly higher than at 20 degrees C. Our experiments indicate that HCGF stimulates the glucose transport system in both WEHI-3 cells and FDC-P cells. The similarities between the WEHI-3B cell and FDC-P2 cell polypeptide phenotype were investigated using two-dimensional isoelectric focussing/poly-acrylamide gel electrophoresis. This revealed a high degree of correlation between the two cell types in their protein constituents, indicating a close relationship between the normal and leukaemic cells. These similarities between WEHI-3B cells and FDC-P2 cells are considered and their relevance to haemopoiesis and leukaemogenesis is discussed.  相似文献   

16.
The effect of serum on LPS-induced activation of a murine macrophage-like cell line, WEHI-3, was examined. Foetal calf serum strongly inhibited the production of nitric oxide (NO) and TNF-alpha by LPS-stimulated WEHI-3 cells, while it enhanced the production of both by other macrophage-like cell lines, J774.1 and BAM3, on treatment with LPS. This suppressive effect of serum on WEHI-3 cells was most remarkable when the cells were stimulated with rough-chemotype LPS, Ra LPS, Rc LPS and Rd2 LPS. Foetal calf serum also inhibited TNF-alpha production by the same cells stimulated with high concentrations of smooth-form LPS (S LPS; > 1000 ng/mL). Serum-mediated suppression was also observed for expression of the TNF-alpha gene in Rc LPS-stimulated WEHI-3 cells. This suppressive effect of FCS was most remarkable during the 1-2 h before the addition of LPS, but it was not observed when FCS was added at 1 h after the addition of LPS, suggesting dependence on the time of FCS addition to LPS-stimulated cells. No significant difference was observed in the expression of CD14 on WEHI-3 cells cultured in the presence and absence of serum, suggesting that CD14 is not involved in the serum-mediated suppression of these LPS-responses. On the contrary, FCS showed enhancing effects on the production of NO and TNF-alpha by WEHI-3 cells stimulated with low concentrations (< 100 ng/mL) of S LPS and rough mutant Salmonella minnesota Re LPS. These results suggest that the ability of FCS to suppress LPS-induced activation of WEHI-3 cells in mainly dependent on the structure of polysaccharide chains and also on the concentration of LPS employed.  相似文献   

17.
Long-term in vitro growth of murine mast cells was dependent on the presence of a mast cell growth factor (MCGF) present in media conditioned by mitogen-activated splenic leukocytes or by various murine leukemic cell lines. MCGF shared a number of properties with granulocyte colony-stimulating factor (G-CSF). Both factors were present in media conditioned by the myelomonocytic leukemic WEHI-3 and the T cell lymphoma, LBRM-33 cell lines. They were relatively sensitive to trypsin treatment, and were resistant to boiling temperature. NZB mice that failed to respond to WEHI-3-derived G-CSF also failed to respond to MCGF. MCGF differed from G-CSF, however, in sensitivity to neuraminidase and lactoferrin, an inhibitor of macrophage CSF production, suppressed G-CSF production by WEHI-3 cells without affecting MCGF production. Furthermore, peritoneal cells produced G-CSF but not MCGF when stimulated with lipopolysaccharide. In vitro production of MCGF by normal spleen cells required the presence of T lymphocytes and is relatively macrophage-independent. The role of T cells in the maturation and growth of mast cells and the physiologic function of MCGF are discussed.  相似文献   

18.
Distinct molecular mechanisms of Fas resistance in murine B lymphoma cells   总被引:5,自引:0,他引:5  
A panel of murine B lymphoma cell lines, which express different levels of Fas, was extensively studied for sensitivity to Fas-mediated death signals via an anti-Fas mAb and Fas ligand-bearing cell lines. Expression of the Fas receptor on the B lymphoma cell lines did not correlate with their capacity to undergo Fas-mediated apoptosis. Moreover, Fas-associated death domain protein recruitment to the death-inducing signaling complex (DISC) complex occurred in all cell lines expressing Fas, regardless of whether they were sensitive to Fas-mediated death. Interestingly, the protein synthesis inhibitor, cycloheximide, and protein kinase C inhibitors, such as bisindolylmaleimide, rendered one of the resistant cell lines, CH33, sensitive to signals from the Fas receptor, although the levels of Fas were unchanged. This suggests that constitutive PKC activation plays a role in Fas resistance, perhaps by up-regulating NF-kappaB or Bcl-2 family members. Interestingly, CH33 demonstrated caspase 8 activity upon engagement of the Fas receptor in the absence of pharmacological manipulation, suggesting that the block in apoptosis is downstream of the DISC complex. In contrast, the fact that Fas-associated death domain protein was recruited to the DISC complex in other resistant lines, such as WEHI-231, with no caspase 8 activation indicates that these cells may be blocked within the DISC complex. Indeed, Western blot analysis showed that WEHI-231 expressed an isoform of FLICE-like inhibitory protein (cFLIPL), an antiapoptotic protein within the DISC. These studies provide evidence that murine B lymphoma cells utilize different molecular mechanisms along the Fas-signaling cascade to block apoptosis.  相似文献   

19.
External ATP causes a great increase in the passive permeability of the plasma membrane for phosphorylated metabolites and other small molecules in cultured mammalian cells. We previously demonstrated that in CHO-K1 cells an ATP-dependent permeability change was induced in the presence of a mitochondrial inhibitor (KCN or rotenone), a cytoskeleton-attacking agent (vinblastine) and a calmodulin antagonist (trifluoperazine). These permeability changes were reversible but long exposure, for 30-60 min, to ATP together with a mitochondrial inhibitor significantly reduced the cell viability of the treated cells. Since this cell lysis was shown to be due to the ATP-dependent permeability change, we could isolate several clones resistant to the action of the external ATP from CHO-K1 cells after repeated treatment with ATP and rotenone. In 9.1 cells, one of the isolated clones, little or no ATP-dependent permeability change was observed in the presence of either a mitochondrial inhibitor, vinblastine or trifluoperazine. This CHO variant could be specifically resistant as to the change in membrane permeability induced by external ATP, since the permeabilities for the 2-deoxyglucose and drugs used in the present studies were similar to those in the case of the parent cells. These results suggest that a specific defect or alteration in the plasma membrane is involved in the ATP-dependent permeability change. It is also reported that Mg2+-dependent ATPase activity was found on the cell surface of both CHO-K1 and 9.1 cells, and this activity was shown to be not involved in the permeability change controlled by external ATP.  相似文献   

20.
Single nuclear gene inheritance was shown to be responsible for increased resistance to: eight diverse inhibitors of mitochondrial function (antimycin, carbonylcyanide-m-chlorophenylhydrazone, chloramphenicol, oligomycin, tetracycline, triethyltin bromide, triphenylmethylphosphonium bromide and triton-X-165); and an inhibitor of cytoplasmic protein synthesis (cycloheximide). Continuous monitoring of oxygen uptake during respiratory adaptation showed that anerobic pretreatment of resistant cells sensitized respiratory adaptation to chloramphenicol and antimycin. However, since a depression of mitochondrial function by catabolite repression did not result in sensitization to antimycin, alteration of the mitochondrial membrane does not appear to be responsible for resistance to mitochondrial inhibition. Alteration of cellular binding sites was not responsible for resistance since in vitro mitochondrial protein synthesis was sensitive to chloramphenicol and in vitro mitochondrial respiration was sensitive to oligomycin, carbonylcyanide-m-chlorophenylhydrazone, and antimycin. Autoradiography of an ethylacetate-ethanol extract of [14C]chloramphenicol-treated resistant cells indicated that resistance was not due to enzymatic modification of inhibitors. The maintenance of an antimycin-resistant respiration by protoplasts of resistant cells ruled out the involvement of the cell wall in cellular resistance. The reduced transport of [14C]chloramphenicol by resistant cells (1% of normal cells) indicated that a single nuclear gene mutation can alter the permeability of the plasma membrane to many diverse inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号