首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A growth chamber experiment was conducted to assess the effect of salinity on emergence, growth, water status, photosynthetic pigments, osmolyte accumulation, and ionic content of quinoa seedlings (Chenopodium quinoa). The aim was to test the hypothesis that quinoa seedlings are well adapted to grow under salinity due to their ability to adjust the metabolic functionality of their cotyledons. Seedlings were grown for 21 days at 250 mM NaCl from the start of the germination. Germination percentage and cotyledon area were not affected by salt whereas seedling height decreased 15%. FW increased in both control and salt-treated cotyledons, but the increase was higher under salinity. DW only increased in salt-treated cotyledons. The DW/FW ratio did not show significant differences between treatments. Relative water content, chlorophyll, carotenoids, lipids, and proteins were significantly lower under salinity. Total soluble sugars, sucrose and glucose concentrations were higher in salt-treated than in control cotyledons. Ion concentration showed a different distribution pattern. Na+ and Cl? concentrations were higher under salinity, while an inverse result was observed for K+ concentration. Proline and glycinebetaine concentrations increased under salinity, but the increase was higher in the former than the latter. The osmoprotective role of proline, glycinebetaine, and soluble sugars is discussed.  相似文献   

3.
Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives   总被引:1,自引:0,他引:1  
Quinoa (Chenopodium quinoa Willd.) originated in the Andean region of South America; this species is associated with exceptional grain nutritional quality and is highly valued for its ability to tolerate abiotic stresses. However, its introduction outside the Andes has yet to take off on a large scale. In the Andes, quinoa has until recently been marginally grown by small-scale Andean farmers, leading to minor interest in the crop from urban consumers and the industry. Quinoa breeding programs were not initiated until the 1960s in the Andes, and elsewhere from the 1970s onwards. New molecular tools available for the existing quinoa breeding programs, which are critically examined in this review, will enable us to tackle the limitations of allotetraploidy and genetic specificities. The recent progress, together with the declaration of “The International Year of the Quinoa” by the Food and Agriculture Organization of the United Nations, anticipates a bright future for this ancient species.  相似文献   

4.
Low temperature represents one of the principal limitations in species distribution and crop productivity. Responses to chilling include the accumulation of simple carbohydrates and changes in enzymes involved in their metabolism. Soluble carbohydrate levels and invertase, sucrose synthase (SS), sucrose-6-phosphate synthase (SPS) and alpha-amylase activities were analysed in cotyledons and embryonic axes of quinoa seedlings grown at 5 degrees C and 25 degrees C in the dark. Significant differences in enzyme activities and carbohydrate levels were observed. Sucrose content in cotyledons was found to be similar in both treatments, while in embryonic axes there were differences. Invertase activity was the most sensitive to temperature in both organs; however, SS and SPS activities appear to be less stress-sensitive. Results suggest that 1) metabolism in germinating perispermic seeds would be different from endospermic seeds, 2) sucrose futile cycles would be operating in cotyledons, but not in embryonic axes of quinoa seedlings under our experimental conditions, 3) low temperature might induce different regulatory mechanisms on invertase, SS and SPS enzymes in both cotyledons and embryonic axes of quinoa seedlings, and 4) low temperature rather than water uptake would be mainly responsible for the changes observed in carbohydrate and related enzyme activities.  相似文献   

5.
6.
Quinoa (Chenopodium quinoa) is a pseudocereal native from the Andean region of South America that has increased in importance worldwide. Quinoa is now considered an alternative to traditional crops in a climate change scenario, considering its ability to adapt to marginal soils, droughts and frosts. Despite the interesting agronomic and nutritional features of this crop, research into quinoa is characterised by individual attempts to define its phenological stages without an international consensus. A unique criterion to quantify the phenology of quinoa could become a useful tool for researchers and plant breeders in future work by standardising this information for international cooperation. In this article, a proposed scale of the phenological growth stages of quinoa based on the BBCH coding system (Biologische Bundesanstalt Bundessortenamt und CHemische Industrie) was developed. Growth stages were described utilising the decimal code of the BBCH system, and figures were included for the most representative stages.  相似文献   

7.
The distribution of minerals in quinoa (Chenopodium quinoa Willd.) seed was examined using energy dispersive X-ray microanalysis (EDX) in combination with scanning electron microscopy (SEM). Phosphorus, K, and Mg coincided in localization in embryonic tissue. Since phytin globoids have been known to localize in protein bodies in embryonic cells of quinoa seed, it is thought that P is attributed to phytic acid and that K and Mg form to phytate. Calcium and K were present in the pericarp, where the cell wall is thickly developed, suggesting that these minerals are associated with pectin. Sulfur occurred in embryonic tissues, which would be derived from sulfur amino acid residues of storage proteins concentrated in the tissues. Abrasion of quinoa seeds resulted particularly in decrease in Ca content.  相似文献   

8.
藜麦及其资源开发利用   总被引:19,自引:0,他引:19  
藜麦Chenopodium quinoa Willd.英文名:quinoa,原产于南美洲安第斯山区,是印加土著居民的主要传统食物,至今已有5 000~7 000多年的利用和种植历史。古代印加人将它称之为"粮食之母"。藜麦在20世纪80年代,被美国宇航局用于宇航员的太空食品。联合国粮农组织认为藜麦是唯一的单一植物即可满足人体基本营养需求的食物,正式推荐藜麦为最适宜人类的完美的全营养食品。本文对藜麦的植物形态、生态特性、营养价值以及在我国种植展望作了综合报道。  相似文献   

9.
Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions.  相似文献   

10.
The aim of this study was to characterize the dehydrin content in mature embryos of two quinoa cultivars, Sajama and Baer La Unión. Cultivar Sajama grows at 3600-4000 m altitude and is adapted to the very arid conditions characteristic of the salty soils of the Bolivian Altiplano, with less than 250 mm of annual rain and a minimum temperature of -1 degrees C. Cultivar Baer La Unión grows at sea-level regions of central Chile and is adapted to more humid conditions (800 to 1500 mm of annual rain), fertile soils, and temperatures above 5 degrees C. Western blot analysis of embryo tissues from plants growing under controlled greenhouse conditions clearly revealed the presence of several dehydrin bands (at molecular masses of approximately 30, 32, 50, and 55 kDa), which were common to both cultivars, although the amount of the 30 and 32 kDa bands differed. Nevertheless, when grains originated from their respective natural environments, three extra bands (at molecular masses of approximately 34, 38, and 40 kDa), which were hardly visible in Sajama, and another weak band (at a molecular mass of approximately 28 kDa) were evident in Baer La Unión. In situ immunolocalization microscopy detected dehydrin-like proteins in all axis and cotyledon tissues. At the subcellular level, dehydrins were detected in the plasma membrane, cytoplasm and nucleus. In the cytoplasm, dehydrins were found associated with mitochondria, rough endoplasmic reticulum cisternae, and proplastid membranes. The presence of dehydrins was also recognized in the matrix of protein bodies. In the nucleus, dehydrins were associated with the euchromatin. Upon examining dehydrin composition and subcellular localization in two quinoa cultivars belonging to highly contrasting environments, we conclude that most dehydrins detected here were constitutive components of the quinoa seed developmental program, but some of them (specially the 34, 38, and 40 kDa bands) may reflect quantitative molecular differences associated with the adaptation of both cultivars to contrasting environmental conditions.  相似文献   

11.
Biosynthesis of beta-lactam antibiotics by fungi and actinomycetes is markedly affected by compounds containing nitrogen. The different processes employed by the spectrum of microbes capable of making these valuable compounds are affected differently by particular compounds. Ammonium ions, except at very low concentrations, exert negative effects via nitrogen metabolite repression, sometimes involving the nitrogen regulatory gene nre. Certain amino acids are precursors or inducers, whereas others are involved in repression and, in certain cases, as inhibitors of biosynthetic enzymes and of enzymes supplying precursors. The most important amino acids from the viewpoint of regulation are lysine, methionine, glutamate and valine. Surprisingly, diamines such as diaminopropane, putrescine and cadaverine induce cephamycin production by actinomycetes. In addition to penicillins and cephalosporins made by fungi and cephamycins made by actinomycetes, other beta-lactams are made by actinomycetes and unicellular bacteria. These include clavams (e.g., clavulanic acid), carbapenems (e.g., thienamycin), nocardicins and monobactams. Here also, amino acids are precursors and inhibitors, but only little is known about regulation. In the case of the simplest carbapenem made by unicellular bacteria, i.e., 1-carba-2-em-3-carboxylic acid, quorum sensors containing homoserine lactone are inducers.  相似文献   

12.
The nucleolus organizer region (NOR) and 5S ribosomal RNA (rRNA) genes are valuable as chromosome landmarks and in evolutionary studies. The NOR intergenic spacers (IGS) and 5S rRNA nontranscribed spacers (NTS) were PCR-amplified and sequenced from 5 cultivars of the Andean grain crop quinoa (Chenopodium quinoa Willd., 2n = 4x = 36) and a related wild ancestor (C. berlandieri Moq. subsp. zschackei (Murr) A. Zobel, 2n = 4x = 36). Length heterogeneity observed in the IGS resulted from copy number difference in subrepeat elements, small re arrangements, and species-specific indels, though the general sequence composition of the 2 species was highly similar. Fifteen of the 41 sequence polymorphisms identified among the C. quinoa lines were synapomorphic and clearly differentiated the highland and lowland ecotypes. Analysis of the NTS sequences revealed 2 basic NTS sequence classes that likely originated from the 2 allopolyploid subgenomes of C. quinoa. Fluorescence in situ hybridization (FISH) analysis showed that C. quinoa possesses an interstitial and a terminal pair of 5S rRNA loci and only 1 pair of NOR, suggesting a reduction in the number of rRNA loci during the evolution of this species. C. berlandieri exhibited variation in both NOR and 5S rRNA loci without changes in ploidy.  相似文献   

13.
If two related plant species hybridize, their genomes may be combined and duplicated within a single nucleus, thereby forming an allotetraploid. How the emerging plant balances two co‐evolved genomes is still a matter of ongoing research. Here, we focus on satellite DNA (satDNA), the fastest turn‐over sequence class in eukaryotes, aiming to trace its emergence, amplification, and loss during plant speciation and allopolyploidization. As a model, we used Chenopodium quinoa Willd. (quinoa), an allopolyploid crop with 2n = 4x = 36 chromosomes. Quinoa originated by hybridization of an unknown female American Chenopodium diploid (AA genome) with an unknown male Old World diploid species (BB genome), dating back 3.3–6.3 million years. Applying short read clustering to quinoa (AABB), C. pallidicaule (AA), and C. suecicum (BB) whole genome shotgun sequences, we classified their repetitive fractions, and identified and characterized seven satDNA families, together with the 5S rDNA model repeat. We show unequal satDNA amplification (two families) and exclusive occurrence (four families) in the AA and BB diploids by read mapping as well as Southern, genomic, and fluorescent in situ hybridization. Whereas the satDNA distributions support C. suecicum as possible parental species, we were able to exclude C. pallidicaule as progenitor due to unique repeat profiles. Using quinoa long reads and scaffolds, we detected only limited evidence of intergenomic homogenization of satDNA after allopolyploidization, but were able to exclude dispersal of 5S rRNA genes between subgenomes. Our results exemplify the complex route of tandem repeat evolution through Chenopodium speciation and allopolyploidization, and may provide sequence targets for the identification of quinoa's progenitors.  相似文献   

14.
Quinoa is a regionally important grain crop in the Andean region of South America. Recently quinoa has gained international attention for its high nutritional value and tolerances of extreme abiotic stresses. DNA markers and linkage maps are important tools for germplasm conservation and crop improvement programmes. Here we report the development of 216 new polymorphic SSR (simple sequence repeats) markers from libraries enriched for GA, CAA and AAT repeats, as well as 6 SSR markers developed from bacterial artificial chromosome-end sequences (BES-SSRs). Heterozygosity (H) values of the SSR markers ranges from 0.12 to 0.90, with an average value of 0.57. A linkage map was constructed for a newly developed recombinant inbred lines (RIL) population using these SSR markers. Additional markers, including amplified fragment length polymorphisms (AFLPs), two 11S seed storage protein loci, and the nucleolar organizing region (NOR), were also placed on the linkage map. The linkage map presented here is the first SSR-based map in quinoa and contains 275 markers, including 200 SSR. The map consists of 38 linkage groups (LGs) covering 913 cM. Segregation distortion was observed in the mapping population for several marker loci, indicating possible chromosomal regions associated with selection or gametophytic lethality. As this map is based primarily on simple and easily-transferable SSR markers, it will be particularly valuable for research in laboratories in Andean regions of South America.  相似文献   

15.
金藜麦耐盐性分析及营养评价   总被引:2,自引:0,他引:2  
对我国沿海地区新收集种质资源金藜麦(Chenopodium quinoa Willd.)进行了耐盐性及营养品质评价。结果表明:金藜麦在对盐胁迫相对敏感的芽期和苗期表现出相对较高的耐盐性;子粒蛋白质含量为14.2%,蛋白营养价值优于牛奶以及小麦、水稻、玉米、大豆等作物;子粒中富含维生素B、E等以及钙、锰、铁、铜、锌等矿质元素,特别是钙含量高达190.16 mg/100g,是小米钙含量的35倍;且金藜麦子粒含有丰富的必需脂肪酸,如亚油酸(3.58 g/100g)和亚麻酸(0.44 g/100g),天然抗氧化剂维生素E含量为7.66 mg/100g。这些研究结果表明,新收集的金藜麦种质资源具有较高的营养价值和耐盐性,将为我国藜麦研究和种植提供重要的种质资源。  相似文献   

16.
Chenopodium quinoa Willd. is a valuable food source which has gained importance in many countries of the world. The plant contains various bitter-tasting saponins which present an important antinutritional factor. Various triterpene saponins have been reported in C. quinoa including both monodesmosidic and bidesmosidic triterpene saponins of oleanolic acid, hederagenin, phytolaccagenic acid, and serjanic acid as the major aglycones and other aglycones as 3β-hydroxy-23-oxo-olean-12-en-28-oic acid, 3β-hydroxy-27-oxo-olean-12-en-28-oic acid, and 3β, 23α, 30β-trihydroxy-olean-12-en-28-oic acid. A tridesmosidic saponin of hederagenin has also been reported. Here we review the occurrence, analysis, chemical structures, and biological activity of triterpene saponins of C. quinoa. In particular, the mode of action of the mono- and bidesmosidic triterpene saponins and aglycones are discussed.  相似文献   

17.
Quinoa cultivars currently grown in North America and Europe require removal of bitter-tasting saponins from the grain prior to human consumption. This need for postharvest processing is a barrier to expanding production of the crop outside its Andean area of origin. Grain saponin content in quinoa shows continuous variation and is considered to be a quantitative trait. However, segregation for the presence or absence of grain saponin in F2 generations derived from crosses between high- and low-saponin parents indicates a major gene effect, with plants homozygous for a recessive allele spl having no detectable grain saponin. Variation in saponin levels among F2 plants with detectable grain saponin was consistent with polygenic inheritance. It appears that grain saponin level in quinoa is both qualitatively and quantitatively controlled, with saponin production requiring at least one dominant allele at the Sp locus and the amount of grain saponin being determined by an unknown number of additional quantitative loci. Introgression of sp1 into day-neutral lines will facilitate the development of short-season "sweet" quinoa cultivars which do not require postharvest processing to remove grain saponin.  相似文献   

18.
Quinoa (Chenopodium quinoa Willd.), one of the main crops domesticated in the Andean highlands 1,000 of years ago, played an important role as a protein source. 35 germplasm accessions collected along the Northwest Argentina (NWA) region were studied using 22 microsatellite (SSR) markers. Results showed a great level of genetic diversity, differing from previous reports about the geographical distribution of quinoa variability. All SSR loci analysed were highly polymorphic detecting a total of 354 alleles among all populations, with an average of 16 alleles per locus. Cluster analyses grouped the accessions into four main clusters at the average genetic distance level (0.80), each of which represented a different environment of the NWA region: Puna (UHe?=?0.42, ±0.07 SE), Dry Valleys (UHe?=?0.27, ±0.05 SE), Eastern Humid Valleys (UHe?=?0.16, ±0.04 SE) and a transition area with high altitudes between the last two environments (UHe?=?0.25, ±0.03 SE). An eastward decreasing genetic diversity gradient was found. AMOVA analyses showed a strong genetic structure: a high population subdivision relative to the grouping by region (Fsr?=?0.47) together with a high genetic differentiation among populations (Fst?=?0.58) and a heterozygous defect (Fis?=?0.63) in each of them. The variability structure, a reflection of the structure of the NWA landscapes, is discussed in connection with environmental variables.  相似文献   

19.
ABSTRACT

Quinoa crude polysaccharides (QPS) were extracted from Chenopodium quinoa Willd. The soluble non-starch polysaccharide fraction (QPS1) was subsequently purified by DEAE-52 cellulose and Sephadex G-50 gel chromatography, using QPS as raw materials. Its chemical structure was identified using FT-IR, NMR, AFM, SEM and Congo red staining. High performance gel permeation chromatography (HPGPC) was used to determine molecular weight, and composition by HPLC. QPS1, with a molecular weight of 34.0 kDa, was mainly composed of mannose, rhamnose, galacturonic acid, glucose, galactose, xylose and arabinose at a molar ratio of 2.63:2.40:1.64:6.28:1.95:2.48:5.01. In addition, we evaluated the ameliorative effects of QPS1 on the improvement of anti-cyclophosphamide (CTX)-induced immunosuppression in ICR mice. The result exhibited significantly immune-enhancing activity: QPS1 successfully improved the content of IFN-γ, IL-6, IFN-ɑ, IgM and lysozyme (LYSO) in serum for three weeks, enhanced the phagocytic function of mononuclear macrophages and ameliorated delayed allergy in mice.  相似文献   

20.

Background and Aims

In mature quinoa (Chenopodium quinoa) seeds, the lasting endosperm forms a micropylar cone covering the radicle. The suspensor cells lie within the centre of the cone. During the final stage of seed development, the cells of the lasting endosperm accumulate protein and lipids while the rest are crushed and disintegrated. Both the suspensor and endosperm die progressively from the innermost layers surrounding the embryo and extending towards the nucellar tissue. Ricinosomes are endoplasmic reticulum-derived organelles that accumulate both the pro-form and the mature form of cysteine endopeptidase (Cys-EP), first identified in castor bean (Ricinus communis) endosperm during germination. This study sought to identify associations between the presence of ricinosomes and programmed cell death (PCD) hallmarks in suspensor and endosperm cells predestined to die during quinoa seed development.

Methods

A structural study using light microscopy and transmission electron microscopy was performed. To detect the presence of Cys-EP, both western blot and in situ immunolocalization assays were carried out using anti-R. communis Cys-EP antibody. A TUNEL assay was used to determine DNA fragmentation.

Results and Conclusions

Except for the one or two cell layers that constitute the lasting endosperm in the mature seed, ricinosomes were found in suspensor and endosperm cells. These cells were also the site of morphological abnormalities, including misshapen and fragmented nuclei, vesiculation of the cytosol, vacuole collapse and cell wall disorganization. It is proposed that, in suspensor and endosperm cells, the early detection of Cys-EP in ricinosomes predicts the occurrence of PCD during late seed development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号