首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strain of Aspergillus nidulans carrying a temperature-sensitive mutation in the manA gene produces cell walls depleted of D-mannose and forms hyphal tip balloons at the restrictive temperature (B.P. Valentine and B.W. Bainbridge, J. Gen. Microbiol. 109:155-168, 1978). We have isolated and characterized the manA gene and physically located it between 3.5 and 5.5 kb centromere distal of the riboB locus on chromosome VIII. The manA gene contains four introns and encodes a 50.6-kDa protein which has significant sequence identity to type I phosphomannose isomerase proteins from other eukaryotes. We have constructed by integrative transformation a null mutation in the manA gene which can only be maintained in a heterokaryotic strain with wild-type manA+ nuclei. Thus, a manA null mutation is lethal in A. nidulans. The phenotype of the mutation was analyzed in germinating conidia. Such conidia are able to commence germination but swell abnormally, sometimes producing a misshapen germ tube, before growth ceases. The reason for the lethality is probably the lack of synthesis of mannose-containing cell wall polymers that must be required for normal cell wall development in growing hyphae.  相似文献   

2.
In filamentous fungi, growth polarity (i.e. hyphal extension) and formation of septa require polarized deposition of new cell wall material. To explore this process, we analyzed a conditional Neurospora crassa mutant, mcb, which showed a complete loss of growth polarity when incubated at the restrictive temperature. Cloning and DNA sequence analysis of the mcb gene revealed that it encodes a regulatory subunit of cAMP-dependent protein kinase (PKA). Unexpectedly, the mcb mutant still formed septa when grown at the restrictive temperature, indicating that polarized deposition of wall material during septation is a process that is, at least in part, independent of polarized deposition during hyphal tip extension. However, septa formed in the mcb mutant growing at the restrictive temperature are mislocalized. Both polarized growth and septation are actin-dependent processes, and a concentration of actin patches is observed at growing hyphal tips and sites where septa are being formed. In the mcb mutant growing at the restrictive temperature, actin patches are uniformly distributed over the cell cortex; however, actin patches are still concentrated at sites of septation. Our results suggest that the PKA pathway regulates hyphal growth polarity, possibly through organizing actin patches at the cell cortex.  相似文献   

3.
4.
S G Kaminskyj  J E Hamer 《Genetics》1998,148(2):669-680
Aspergillus nidulans grows by apical extension of multinucleate cells called hyphae that are subdivided by the insertion of crosswalls called septa. Apical cells vary in length and number of nuclei, whereas subapical cells are typically 40 microm long with three to four nuclei. Apical cells have active mitotic cycles, whereas subapical cells are arrested for growth and mitosis until branch formation reinitiates tip growth and nuclear divisions. This multicellular growth pattern requires coordination between localized growth, nuclear division, and septation. We searched a temperature-sensitive mutant collection for strains with conditional defects in growth patterning and identified six mutants (designated hyp for hypercellular). The identified hyp mutations are nonlethal, recessive defects in five unlinked genes (hypA-hypE). Phenotypic analyses showed that these hyp mutants have aberrant patterns of septation and show defects in polarity establishment and tip growth, but they have normal nuclear division cycles and can complete the asexual growth cycle at restrictive temperature. Temperature shift analysis revealed that hypD and hypE play general roles in hyphal morphogenesis, since inactivation of these genes resulted in a general widening of apical and subapical cells. Interestingly, loss of hypA or hypB function lead to a cessation of apical cell growth but activated isotropic growth and mitosis in subapical cells. The inferred functions of hypA and hypB suggest a mechanism for coordinating apical growth, subapical cell arrest, and mitosis in A. nidulans.  相似文献   

5.
Growth at the restrictive temperature (42 degrees C) of Aspergillus nidulans B120, carrying the conditional-lethal mutation sod(VI)C1, was partially improved by the addition of 1.0 M sorbitol to the medium. The mutant grown at 42 degrees C, with osmotic stabilizer, showed abnormal hyphal morphology, a decrease in beta-1,3-glucan synthase activity as well as cell wall sugar content, but an increase in chitin synthase activity and N-acetyl-glucosamine content. The mutation also affected the secretion of extracellular protease. The temperature-dependent osmo-sensitive phenotype of a Saccharomyces cerevisiae alpha-COP mutation can be rescued by the A. nidulans sod(VI)C(+) gene. These results indicate that the sod(VI)C1 mutation affects proper processing of secretory proteins destined for the surface of cells or beyond.  相似文献   

6.
A P Enos  N R Morris 《Cell》1990,60(6):1019-1027
In A. nidulans, the temperature-sensitive cell cycle mutation bimC4 causes an elevated mitotic index at restrictive temperature. Under restrictive conditions the mutation interferes with separation of the spindle pole bodies, causes abnormal spindle morphology, and prevents nuclear division. We have cloned and sequenced the wild-type bimC gene. The predicted protein product has homology to Drosophila kinesin heavy chain. We conclude that this kinesin-like protein has an important role in nuclear division in Aspergillus.  相似文献   

7.
Polarity-defective mutants of Aspergillus nidulans   总被引:4,自引:0,他引:4  
  相似文献   

8.
A temperature-sensitive mutation in the nudC gene (nudC3) of Aspergillus nidulans specifically prevents the microtubule-based movement of nuclei in this organism at the restrictive temperature. The mutation does not affect short term growth, nuclear division, or the movement of other subcellular organelles. Immunofluorescence analysis of cells blocked at the restrictive temperature, using antitubulin antibodies, shows that the inability of nuclei to move under these conditions is not related to an inability of a particular class of microtubule to form. The inability to move nuclei in this mutant is also shown to be independent of both mitosis and the number of nuclei in the cell as a double mutant carrying both nudC3 and a cell cycle-specific mutation blocks with a single immotile nucleus at the restrictive temperature. The molecular cloning of the nudC gene and sequence analysis reveal that it encodes a previously unidentified protein of 22 kd. Affinity-purified antisera reactive to the nudC protein cross reacts to a single protein of 22 kD in Aspergillus protein extracts. This purified sera failed to reveal a subcellular location for the nudC protein at the level of indirect immunofluorescence. The data presented suggest that the 22-kD nudC gene product functions by interacting between microtubules and nuclei and/or is involved in the generation of force used to move nuclei during interphase.  相似文献   

9.
Branching generates new axes of polar growth in filamentous fungi and is critical for development, reproduction, and pathogenicity. To investigate branching we screened an Aspergillus nidulans temperature-sensitive mutant collection for abnormal hyphal branch (ahb) mutants. We identified two mutants, ahbA1, which showed reduced branching relative to wild type at restrictive temperature, and ahbB1, which showed increased branching relative to wild type at restrictive temperature. Both mutants also showed abnormal conidiophore development at restrictive temperature. The ahbA1 hypobranching mutant showed defects in nuclear division and hydroxyurea resistance. Complementation and sequencing showed that ahbA1 is a previously identified allele of the cell cycle regulator nimX. The ahbB1 hyperbranching mutant had an increased number of nuclei, was osmotically remedial and Calcofluor resistant. The ahbB gene is predicted to encode a novel protein that has homologues exclusively in filamentous fungi. The C-terminal domain of the predicted AhbB protein showed homology with the heme-binding domain of a cytochrome P450 protein and sequencing of the ahbB1 mutant allele showed that the lesion lies just before this putative heme-binding domain. The ahbB1 mutant showed increased sensitivity to the ergosterol biosynthesis inhibitor imidazole. Our results suggest a link between nuclear division and branching and a possible role for membrane synthesis in branching.  相似文献   

10.
J H Doonan  N R Morris 《Cell》1989,57(6):987-996
In Aspergillus nidulans, the temperature-sensitive, recessive cell cycle mutation bimG11 causes an elevated mitotic index at restrictive temperature and an inability to complete the anaphase separation of daughter nuclei. We have shown that this mutation has an abnormally high content of nuclear phosphoproteins and that the wild-type gene encodes a type 1 protein phosphatase. We conclude that dephosphorylation of a key protein(s) is required to complete mitosis.  相似文献   

11.
S. D. Harris  J. L. Morrell    J. E. Hamer 《Genetics》1994,136(2):517-532
Filamentous fungi undergo cytokinesis by forming crosswalls termed septa. Here, we describe the genetic and physiological controls governing septation in Aspergillus nidulans. Germinating conidia do not form septa until the completion of their third nuclear division. The first septum is invariantly positioned at the basal end of the germ tube. Block-and-release experiments of nuclear division with benomyl or hydroxyurea, and analysis of various nuclear division mutants demonstrated that septum formation is dependent upon the third mitotic division. Block-and-release experiments with cytochalasin A and the localization of actin in germlings by indirect immunofluorescence showed that actin participated in septum formation. In addition to being concentrated at the growing hyphal tips, a band of actin was also apparent at the site of septum formation. Previous genetic analysis in A. nidulans identified four genes involved in septation (sepA-D). We have screened a new collection of temperature sensitive (ts) mutants of A. nidulans for strains that failed to form septa at the restrictive temperature but were able to complete early nuclear divisions. We identified five new genes designated sepE, G, H, I and J, along with one additional allele of a previously identified septation gene. On the basis of temperature shift experiments, nuclear counts and cell morphology, we sorted these cytokinesis mutants into three phenotypic classes. Interestingly, one class of mutants fails to form septa and fails to progress past the third nuclear division. This class of mutants suggests the existence of a regulatory mechanism in A. nidulans that ensures the continuation of nuclear division following the initiation of cytokinesis.  相似文献   

12.
A conditionally lethal mutation in the bimB gene of Aspergillus nidulans disrupts the normal regulatory patterns associated with mitotic events. This results in DNA replication in the absence of the completion of mitosis in the mutant at restrictive temperature. This defect yields large polyploid nuclei after several hours at restrictive temperature. The bimB gene has been cloned by genetic mapping and chromosome walking from the previously cloned amdS gene. The cloned DNA complements the temperature-sensitive recessive bimB3 mutation. Sequence analysis of overlapping complementary DNA clones for bimB predicts a polypeptide of 2,068 amino acids. The predicted polypeptide of 227,958 Da is shown to have a carboxyl-terminal region similar to those of the budding yeast ESP1 and fission yeast cut1+ genes. In contrast these genes exhibit no other regions of similarity to one another. The conserved domain in these three proteins and the similarity of the terminal mutant phenotypes for these genes are suggestive of a conserved function for this domain in each of the predicted polypeptides. We also present evidence for a second gene in the genome of A. nidulans which also has this conserved carboxyl-terminal region, suggesting that bimB, ESP1, and cut1+ may be members of a small gene family.  相似文献   

13.
Conventional kinesin is a microtubule-dependent motor protein believed to be involved in a variety of intracellular transport processes. In filamentous fungi, conventional kinesin has been implicated in different processes, such as vesicle migration, polarized growth, nuclear distribution, mitochondrial movement and vacuole formation. To gain further insights into the functions of this kinesin motor, we identified and characterized the conventional kinesin gene, kinA, of the established model organism Aspergillus nidulans. Disruption of the gene leads to a reduced growth rate and a nuclear positioning defect, resulting in nuclear cluster formation. These clusters are mobile and display a dynamic behaviour. The mutant phenotypes are pronounced at 37 degrees C, but rescued at 25 degrees C. The hyphal growth rate at 25 degrees C was even higher than that of the wild type at the same temperature. In addition, kinesin-deficient strains were less sensitive to the microtubule destabilizing drug benomyl, and disruption of conventional kinesin suppressed the cold sensitivity of an alpha-tubulin mutation (tubA4). These results suggest that conventional kinesin of A. nidulans plays a role in cytoskeletal dynamics, by destabilizing microtubules. This new role of conventional kinesin in microtubule stability could explain the various phenotypes observed in different fungi.  相似文献   

14.
Nineteen mutants that are conditional for both the ability to regain motility following deciliation and the ability to grow were isolated. The mutations causing slow growth were placed into five complementation groups. None of the mutations appears to affect energy production as all mutants remained motile at the restrictive temperature. In three complementation groups protein synthesis and the levels of mRNA encoding alpha-tubulin or actin were largely unaffected at the restrictive temperature, consistent with the hypothesis that mutations in these three groups directly affect the assembly of functional cilia and growth. Complementation group 1 was chosen for further characterization. Both phenotypes were shown to be linked, suggesting they are caused by a single mutation. Group 1 mutants regenerated cilia at the restrictive temperature, but the cilia were nonmotile. This mutation also caused a block in cytokinesis at the restrictive temperature but did not affect nuclear divisions or DNA synthesis. The block in cell division was transiently rescued by wild-type cytoplasm exchanged when mutants were paired with wild-type cells during conjugation (round 1 of genomic exclusion). Thus, at least one mutation has been isolated that affects assembly of some microtubule-based structures in Tetrahymena (cilia during regeneration) but not others (nuclei divide at 38 degrees), and the product of this gene is likely to play a role in both ciliary function and in cytokinesis.  相似文献   

15.
Y. H. Chiu  N. R. Morris 《Genetics》1995,141(2):453-464
Nuclear migration plays an important role in the growth and development of many organisms including the filamentous fungus Aspergillus nidulans. We have cloned three genes from A. nidulans, nudA, nudC, and nudF, in which mutations affect nuclear migration. The nudA gene encodes the heavy chain of cytoplasmic dynein. The nudC gene encodes a 22-kD protein. The nudF gene was identified as an extracopy suppressor of the temperature sensitive (ts(-)) nudC3 mutation. The nudC3 mutation substantially decreases the intracellular concentration of the nudF protein at restrictive temperature. This is restored toward the normal level by an extra copy of nudF. To identify other genes whose products interact directly or indirectly with the NUDC protein, we have isolated a set of extragenic suppressors of the nudC3 temperature-sensitive mutation. Genetic analysis of 16 such extragenic suppressors showed them to represent nine different genes, designated sncA-sncI (for suppressor of nudC). sncA-sncH were either dominant or semidominant in diploids homozygous for nudC3 and heterozygous for the snc mutations. All of the suppressors reversed the ts(-) phenotype of nudC3 by restoring the intracellular concentration of the NUDF protein.  相似文献   

16.
The filamentous fungus Aspergillus nidulans grows by polarized extension of hyphal tips. The actin cytoskeleton is essential for polarized growth, but the role of microtubules has been controversial. To define the role of microtubules in tip growth, we used time-lapse microscopy to measure tip growth rates in germlings of A. nidulans and in multinucleate hyphal tip cells, and we used a green fluorescent protein-alpha-tubulin fusion to observe the effects of the antimicrotubule agent benomyl. Hyphal tip cells grew approximately 5 times faster than binucleate germlings. In germlings, cytoplasmic microtubules disassembled completely in mitosis. In hyphal tip cells, however, microtubules disassembled through most of the cytoplasm in mitosis but persisted in a region near the hyphal tip. The growth rate of hyphal tip cells did not change significantly in mitosis. Benomyl caused rapid disassembly of microtubules in tip cells and a 10x reduction in growth rate. When benomyl was washed out, microtubules assembled quickly and rapid tip growth resumed. These results demonstrate that although microtubules are not strictly required for polarized growth, they are rate-limiting for the growth of hyphal tip cells. These data also reveal that A. nidulans exhibits a remarkable spatial regulation of microtubule disassembly within hyphal tip cells.  相似文献   

17.
We have identified and cloned a novel essential myosin I in Aspergillus nidulans called myoA. The 1,249-amino acid predicted polypeptide encoded by myoA is most similar to the amoeboid myosins I. Using affinity-purified antibodies against the unique myosin I carboxyl terminus, we have determined that MYOA is enriched at growing hyphal tips. Disruption of myoA by homologous recombination resulted in a diploid strain heterozygous for the myoA gene disruption. We can recover haploids with an intact myoA gene from these strains, but never haploids that are myoA disrupted. These data indicated that myoA encodes an essential myosin I, and this has allowed us to use a unique approach to studying myosin I function. We have developed conditionally null myoA strains in which myoA expression is regulated by the alcA alcohol dehydrogenase promoter. A conditionally lethal strain germinated on inducing medium grows as wild type, displaying polarized growth by apical extension. However, growth of the same myoA mutant strain on repressing medium results in enlarged cells incapable of hyphal extension, and these cells eventually die. Under repressing conditions, this strain also displays reduced levels of secreted acid phosphatase. The mutant phenotype indicates that myoA plays a critical role in polarized growth and secretion.  相似文献   

18.
The calmodulin gene has been shown to be essential for cell cycle progression in a number of eukaryotic organisms. In vertebrates and Aspergillus nidulans the calmodulin dependence also requires calcium. We demonstrate that the unique gene encoding a multifunctional calcium/calmodulin-dependent protein kinase (CaMK) is also essential in A. nidulans. This enzyme is required both for the nuclear division cycle and for hyphal growth, because spores containing the disrupted gene arrest with a single nucleus and fail to extend a germ tube. A strain conditional for the expression of CaMK was created. When grown under conditions that resulted in a 90% decrease in the enzyme, both nuclear division and growth were markedly slowed. The CaMK seems to be important for progression from G2 to mitosis.  相似文献   

19.
Filamentous fungi like Aspergillus nidulans can effectively colonize their surroundings by the formation of new branches along the existing hyphae. While growth conditions, chemical perturbations, and mutations affecting branch formation have received great attention during the last decades, the mechanisms that regulates branching is still poorly understood. In this study, a possible relation between cell cycle progression and branching was studied by testing the effect of a nuclei distribution mutation, cell cycle inhibitors, and conditional cell cycle mutations in combination with tip-growth inhibitors and varying substrate concentrations on branch initiation. Formation of branches was blocked after inhibition of nuclear division, which was not caused by a reduced growth rate. In hyphae of a nuclei distribution mutant branching was severely reduced in anucleated hyphae whereas the number of branches per hyphal length was linearly correlated to the concentration of nuclei, in the nucleated hyphae. In wild type cells, branching intensity was increased when the tip extension was reduced, and reduced when growing on poor substrates. In these situations, the hyphal concentration of nuclei was maintained and it is suggested that branching is correlated to cell cycle progression in order to maintain a minimum required cytoplasmic volume per nucleus and to avoid the formation of anucleated hyphae in the absence of nuclear divisions. The presented results further suggest the hyphal diameter as a key point through which the hyphal element regulates its branching intensity in response to the surrounding substrate concentrations.  相似文献   

20.
We have examined the effects of the antimicrotubule agent benomyl and several mutations on nuclear and mitochondrial movement in germlings of the filamentous fungus Aspergillus nidulans. While, as previously reported, benomyl inhibited nuclear division and movement, it did not inhibit mitochondrial movement. To test the effects of benomyl more rigorously, we germinated two benomyl super-sensitive, beta-tubulin mutants at a benomyl concentration 50-100 times greater than that required to inhibit colony formation completely. Again nuclear division and movement were inhibited, but mitochondrial movement was not. We also examined conditionally lethal beta-tubulin mutations that disrupt microtubule function under restrictive conditions. Nuclear division and movement were inhibited but, again, mitochondrial movement was not. Finally we examined the effects of five heat-sensitive mutations that inhibit nuclear movement but not nuclear division at restrictive temperatures. These mutations strongly inhibited nuclear movement at a restrictive temperature but did not inhibit mitochondrial movement. These data demonstrate that the mechanisms of nuclear and mitochondrial movement in Aspergillus nidulans are not identical and suggest that mitochondrial movement does not require functional microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号