首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 945 毫秒
1.
The synergistic protective effect of Nicorandil (KATP channel opener) and Amlodipine (calcium channel blocker) on heart tissue antioxidant defense system and lipid profile were examined on isoproterenol induced myocardial infarction in rats. The rats given isoproterenol (150 mg kg–1 daily, i.p.) for 2 days showed significant changes in antioxidant defense system and lipid profile levels. Pretreatment with Nicorandil (2.5 mg kg–1 daily, p.o.) and Amlodipine (5.0 mg kg–1 daily, p.o.) for 3 days significantly prevented these alterations and restored the enzyme activities to near normal. These findings indicate the synergistic protective effect of Nicorandil and Amlodipine on tissue defense system and lipid metabolism during isoproterenol induced cardiac damage.  相似文献   

2.
AimsMembrane bound adenosine triphosphatases (ATPases) and lysosomal enzymes play an important role in the pathology of myocardial infarction. This study was aimed to evaluate the combined preventive effects of quercetin and α-tocopherol on membrane bound ATPases and lysosomal enzymes in isoproterenol induced myocardial infarcted rats.Main methodsMale Wistar rats were pretreated with a combination of quercetin (10 mg/kg) and α-tocopherol (10 mg/kg) daily for 14 days. After the pretreatment period, isoproterenol (100 mg/kg) was injected to rats at an interval of 24 h for two days to induce myocardial infarction. The activities of ATPases and lysosomal enzymes were assayed.Key findingsIsoproterenol treated rats showed decreased levels of heart creatine kinase and lactate dehydrogenase. The activity of sodium potassium adenosine triphosphatase was decreased and the activities of magnesium adenosine triphosphatase and calcium adenosine triphosphatase were increased in isoproterenol treated rats. Also, the activities of β-glucuronidase, β-N-acetylglucosaminidase, β-galactosidase, cathepsin-B and D were increased (serum and heart), but the activities of β-glucuronidase and cathepsin-D were decreased in lysosomal fraction and increased in cytosolic fraction of the heart in isoproterenol treated rats. Furthermore, the heart lipid peroxidation products were increased in isoproterenol treated rats. Combined pretreatment with quercetin and α-tocopherol to isoproterenol treated rats normalized all the biochemical parameters studied. The observed effects are due to their membrane stabilizing property and this property might be due to decreased lipid peroxidation.SignificanceOur study demonstrated that combined pretreatment was better than single pretreatment. This study may have significant impact on myocardial infarcted patients.  相似文献   

3.
4.
Myocardial infarction is one of the most common manifestations of cardiovascular disease. In the present study, we investigated the protective effect of betaine, a potent lipotropic molecule, on changes in the levels of lysosomal enzymes and lipid peroxidation in isoprenaline-induced myocardial infarction in Wistar rats, an animal model of myocardial infarction in man. Male albino Wistar rats were pretreated with betaine (250 mg/kg body weight) daily for a period of 30 days. After the treatment period, isoprenaline (11 mg/100 g body weight) was intraperitoneally administered to rats at intervals of 24 h for 2 days. The activities of lysosomal enzymes (β-glucuronidase, β-galactosidase, β-glucosidase, and acid phosphatase) were significantly (p < 0.05) increased in plasma with a concomitant decline in the activities of these enzymes in heart tissue of isoprenaline-administered rats. Also, the level of lipid peroxidation was higher in heart lysosomes of isoprenaline-injected rats. Pretreatment with betaine daily for a period of 30 days to isoprenaline-induced rats prevented the changes in the activities of these lysosomal enzymes. Oral treatment with betaine (250 mg/kg body weight) to normal control rats did not show any significant effect in all the biochemical parameters studied. Thus, the results of our study show that betaine protects the lysosomal membrane against isoprenaline-induced myocardial infarction. The observed effects might be due to the free radical-scavenging and membrane-stabilizing properties of betaine.  相似文献   

5.

Background

Traditional Chinese medicinal herbs Cortex Moutan and Radix Salviae Milthiorrhizaeare are prescribed together for their putative cardioprotective effects in clinical practice. However, the rationale of the combined use remains unclear. The present study was designed to investigate the cardioprotective effects of paeonol and danshensu (representative active ingredient of Cortex Moutan and Radix Salviae Milthiorrhizae, respectively) on isoproterenol-induced myocardial infarction in rats and its underlying mechanisms.

Methodology

Paeonol (80 mg kg−1) and danshensu (160 mg kg−1) were administered orally to Sprague Dawley rats in individual or in combination for 21 days. At the end of this period, rats were administered isoproterenol (85 mg kg−1) subcutaneously to induce myocardial injury. After induction, rats were anaesthetized with pentobarbital sodium (35 mg kg−1) to record electrocardiogram, then sacrificed and biochemical assays of the heart tissues were performed.

Principal Findings

Induction of rats with isoproterenol resulted in a marked (P<0.001) elevation in ST-segment, infarct size, level of serum marker enzymes (CK-MB, LDH, AST and ALT), cTnI, TBARS, protein expression of Bax and Caspase-3 and a significant decrease in the activities of endogenous antioxidants (SOD, CAT, GPx, GR, and GST) and protein expression of Bcl-2. Pretreatment with paeonol and danshensu combination showed a significant (P<0.001) decrease in ST-segment elevation, infarct size, cTnI, TBARS, protein expression of Bax and Caspase-3 and a significant increase in the activities of endogenous antioxidants and protein expression of Bcl-2 and Nrf2 when compared with individual treated groups.

Conclusions/Significance

This study demonstrates the cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial infarction in rats. The mechanism might be associated with the enhancement of antioxidant defense system through activating of Nrf2 signaling and anti-apoptosis through regulating Bax, Bcl-2 and Caspase-3. It could provide experimental evidence to support the rationality of combinatorial use of traditional Chinese medicine in clinical practice.  相似文献   

6.
We evaluated the preventive effect of caffeic acid (CA) on lysosomal enzymes in isoproterenol (ISO)‐treated myocardial infarcted rats. Male albino Wistar rats were pretreated with CA (15 mg/kg) daily for a period of 10 days. After the pretreatment period, ISO (100 mg/kg) was subcutaneously injected to rats twice at an interval of 24 h. The activity of serum creatine kinase‐MB and lactate dehydrogenase was increased significantly (P < 0.05) in ISO‐induced myocardial infarcted rats. The levels of plasma thiobarbituric acid reactive substances and lipid hydroperoxides were significantly (P < 0.05) increased, and the level of plasma‐reduced glutathione was significantly (P < 0.05) decreased in ISO‐induced myocardial infarcted rats. The activities of lysosomal enzymes (β‐glucuronidase, β‐N‐acetylglucosaminidase, β‐galactosidase, cathepsin‐B and cathepsin‐D) were increased significantly (P < 0.05) in the serum and heart of ISO‐induced myocardial infarcted rats. ISO induction also resulted in decreased stability of membranes, which was reflected by lowered activities of β‐glucuronidase and cathepsin‐D in different fractions except cytosol. Pretreatment with CA (15 mg/kg) to ISO‐treated rats significantly (P < 0.05) prevented the changes in the activities of cardiac marker enzymes, the levels of lipid peroxidation products, reduced glutathione and the activities of lysosomal enzymes in the serum, heart, and subcellular fractions. Oral treatment with CA (15 mg/kg) to normal control rats did not show any significant effect. Thus, the results of our study showed that CA prevented the lysosomal membrane damage against ISO‐induced myocardial infarction. The observed effects of CA are due to membrane‐stabilizing, antilipo peroxidative, and antioxidant effects. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:115–122, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20319  相似文献   

7.
The effect of curcumin on the biochemical changes induced by isoproterenol (ISO) administration in rats was examined. ISO (300 mg Kg–1 administered subcutaneously twice at an interval of 24 h) caused a decrease in body weight and an increase in heart weight, water content as well as in the levels of serum marker enzymes viz creatine kinase (CK), lactate dehydrogenase (LDH) and LDH1 isozyme. It also produced electrocardiographic changes such as increased heart rate, reduced R amplitude and ST elevation. Curcumin at a concentration of 200 mg.Kg–1 when administered orally, showed a decrease in serum enzyme levels and the electrocardiographic changes got restored towards normalcy. Myocardial infarction was accompanied by the disintegration of membrane polyunsaturated fatty acids expressed by increase of thiobarbituric acid reactive substance (TBARS), a measure of lipid peroxides and by the impairment of natural scavenging, characterized by the decrease in the levels of superoxide dismutase, catalase, glutathione peroxidase, ceruloplasmin, alpha tocopherol, reduced glutathione (GSH) and ascorbic acid. The oral pretreatment with curcumin two days before and during ISO administration decreased the effect of lipid peroxidation. It was shown to have a membrane stabilizing action by inhibiting the release of -glucuronidase from nuclei, mitochondria, lysosome and microsome. Curcumin pre- and co-treatment decreased the severity of pathological changes and thus, could have a protective effect against the damage caused by myocardial infarction (MI).  相似文献   

8.
This study was aimed to evaluate the preventive role of (-)epigallocatechin-gallate (EGCG) on lysosomal enzymes in isoproterenol (ISO)-induced myocardial infarcted rats. Male albino Wistar rats were pretreated with EGCG (30 mg/kg) daily for a period of 21 days. After the treatment period, ISO (100 mg/kg) was subcutaneously injected to rats at intervals of 24h for 2 days. The activities of lysosomal enzymes (beta-glucuronidase, beta-N-acetylglucosaminidase, beta-galactosidase, cathepsin-B and cathepsin-D) were increased significantly (P<0.05) in serum and the heart of ISO-induced rats. ISO-induction also resulted in decreased stability of membranes, which was reflected by decreased activities of beta-glucuronidase and cathepsin-D in mitochondrial, nuclear, lysosomal and microsomal fractions. Pretreatment with EGCG daily for a period of 21 days to ISO-induced rats prevented the changes in the activities of these enzymes. Oral treatment with EGCG (30 mg/kg) to normal control rats did not show any significant effect in all the biochemical parameters studied. Thus, the results of our study shows that EGCG protects the lysosomal membrane against ISO-induced cardiac damage. The observed effects might be due to the free radical scavenging and membrane stabilizing properties of EGCG.  相似文献   

9.
Influence of zinc supplementation (30 and 45 mg kg–1, orally once for 5 days) during chelation of lead (0.3 mmol kg–1, chelating agent, i.p., once for 5 days) on some selected variables of the immune system was investigated in male rats. Treatment with CaNa2EDTA either alone or in combination with zinc (30 mg kg–1) produced a significant recovery in lead induced alteration in primary antibody forming cells to T-dependent antigen and the delayed-type hypersensitivity response to bovine albumin. However, biologically significant recovery was observed only with zinc at a dose of 45 mg kg1. It is assumed that zinc depletion during lead exposure and chelation treatment lead to harmful effects on cellular proliferation by inhibiting DNA synthesis and various enzymes during mitosis. The zinc supplementation fulfills this requirement during proliferation and clonal expansion of immunocompetent cells augmenting the immune system.  相似文献   

10.
Studies on the lipid peroxidation and antioxidant changes and their significance during myocardial injury have provided a new insight into the pathogenesis of heart disease. The heart failure subsequent to myocardial infarction may be associated with an antioxidant deficit as well as increased myocardial oxidative stress. The present study was designed to evaluate the effect of the combination of ferulic acid and ascorbic acid on antioxidant defense system and lipid peroxidation against isoproterenol (ISO)-induced myocardial infarction in rats. Induction of rats with isoproterenol (150 mg/kg body weight daily, i.p.) for 2 days resulted in a marked elevation in lipid peroxidation, serum marker enzymes (LDH, CPK, GOT, and GPT), and a significant decrease in activities of endogenous antioxidants (SOD, GPx, GST, CAT, and GSH). Pre-co-treatment with the combination of ferulic acid (20 mg/kg body weight/day) and ascorbic acid (80 mg/kg body weight/day) orally for 6 days, significantly attenuated these changes when compared to the individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. Thus, ferulic acid and ascorbic acid significantly counteracted the pronounced oxidative stress effect of ISO by the inhibition of lipid peroxidation, restoration of antioxidant status, and myocardial marker enzymes levels. In conclusion, these findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on lipid peroxidation and antioxidant defense system during ISO-induced myocardial infarction and associated oxidative stress in rats.  相似文献   

11.

Mitochondrial dysfunction plays crucial role in the pathologenesis of myocardial infarction (MI). The present study evaluated the protective effect of α-bisabolol against isoproterenol (ISO)-induced mitochondrial dysfunction and apoptosis in rats. Male albino Wistar rats were pre- and co-treated with intraperitoneal injection of α-bisabolol (25 mg/kg body weight) daily for 10 days. To induce experimental MI, ISO (85 mg/kg body weight) was injected subcutaneously to the rats at an interval of 24 h for 2 days (9th and 10th day). ISO-induced MI was indicated by the decreased activities of heart creatine kinase and lactate dehydrogenase in rats. ISO administration also enhanced the concentrations of heart mitochondrial lipid peroxidation products and decreased the activities/concentrations of mitochondrial antioxidants, Kreb’s cycle dehydrogenases and mitochondrial electron transport chain complexes I, II?+?III and IV in rats. Furthermore, ISO triggers calcium overload and ATP depletion in the rat’s heart mitochondria followed by the mitochondrial cytochrome-C release and the activation of intrinsic pathway of apoptosis by upregulating the myocardial pro-apoptotic Bax, P53, APAF-1, active caspase-3, active caspase-9 and down regulating the expressions of anti-apoptotic Bcl-2. α-Bisabolol pre and co-treatment showed considerable protective effects on all the biochemical and molecular parameters studied. Transmission electron microscopic study and mitochondrial swelling assay confirmed our biochemical and molecular findings. The in vitro study on hydroxyl radical also revealed the potent free radical scavenging activity of α-bisabolol. Thus, α-bisabolol attenuates mitochondrial dysfunction and intrinsic pathway of apoptosis in ISO-induced myocardial infarcted rats.

  相似文献   

12.
The present study was designed to evaluate the preventive effects of zingerone on circulatory lipid peroxides and nonenzymatic antioxidants in isoproterenol‐induced myocardial infarcted rats. Rats were pretreated with zingerone (6 mg/kg body weight) daily for a period of 14 days and were then induced myocardial infarction with isoproterenol (100 mg/kg body weight) on 15th and 16th day. Increased intensities of serum lactate dehydrogenase isoenzymes 1 and 2 bands enhanced plasma lipid peroxidation products and lowered nonenzymatic antioxidant system were noted in isoproterenol‐induced rats. Pretreatment with zingerone daily for 14 days revealed significant preventive effects on the electrophoretic and biochemical parameters evaluated in isoproterenol‐induced rats. Furthermore, the in vitro study confirmed the potent antioxidant activity of zingerone. The results of our study showed that zingerone protected the rat's heart against isoproterenol‐induced myocardial infarction by its antioxidant effect.  相似文献   

13.
Chronic treatment of rats with adriamycin has been shown to affect myocardial lysosomes as well as enzyme activities in the serum fraction. In this study, we examined in vitro effects of adriamycin (10–6 to 10–3 M) on the lysosomal fraction isolated from rat ventricular tissue. Morphological examination revealed that the isolated fraction was mainly vesicular in nature. Higher concentrations of adriamycin (10–3 M) caused a significant loss of acid phosphatase and N-acetyl-B-d-glucosaminidase activity from the lyosomal vesicles. The enzyme leakage was not accompanied by any intravesicular localization of lanthanum, an extravesicular electron dense tracer. Preincubation of lysosomal vesicles with 10 g/ml superoxide dismutase did not protect against adriamycin-induced loss of lysosomal enzymes. The study shows that adriamycin induces loss of lysosomal enzymes in vitro and the superoxide radical may not be involved in this change.  相似文献   

14.
L-Arginine crosses the cell membrane primarily through the system y(+) transporter. The aim of this study was to investigate the role of L-arginine transport in nitric oxide (NO) production in aortas of rats with heart failure induced by myocardial infarction. Tumor necrosis factor-alpha levels in aortas of rats with heart failure were six times higher than in sham rats (P < 0.01). L-Arginine uptake was increased in aortas of rats with heart failure compared with sham rats (P < 0.01). Cationic amino acid transporter-2B and inducible (i) nitric oxide synthase (NOS) expression were increased in aortas of rats with heart failure compared with sham rats (P < 0.05). Aortic strips from rats with heart failure treated with L-arginine but not D-arginine increased NO production (P < 0.05). The effect of L-arginine on NO production was blocked by L-lysine, a basic amino acid that shares the same system y(+) transporter with L-arginine, and by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Treatment with L-lysine and L-NAME in vivo decreased plasma nitrate and nitrite levels in rats with heart failure (P < 0.05). Our data demonstrate that NO production is dependent on iNOS activity and L-arginine uptake and suggest that L-arginine transport plays an important role in enhanced NO production in heart failure.  相似文献   

15.
Dietary flavonoids intake has been reported inversely related to the incidence of cardiovascular diseases (CVD). The present study is undertaken to evaluate the preventive role of naringin on mitochondrial enzymes in isoproterenol (ISO)-induced myocardial infarction in male albino Wistar rats. Rats subcutaneously injected with ISO (85 mg/kg) at an interval of 24 h for 2 days, resulting in significant (p < 0.05) increase in the levels of mitochondrial lipid peroxides. ISO-induction also showed significant (p < 0.05) decrease in the activities of mitochondrial tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome c oxidase). Oral pretreatment with naringin (10, 20, and 40 mg/kg) to ISO-induced rats daily for a period of 56 days significantly (p < 0.05) minimized the alterations in all the biochemical parameters and restored the normal mitochondrial function. Transmission electron microscopic (TEM) observations also correlated with these biochemical findings. Thus, our findings demonstrate that naringin prevents the mitochondrial dysfunction during ISO-induced myocardial infarction in rats.  相似文献   

16.
This investigation characterised the effects of exogenous insulin on exocrine pancreatic secretion in anaesthetised healthy and diabetic rats. Animals were rendered diabetic by a single injection of streptozotocin (STZ, 60 mg kg–1 I.P.). Age-matched controls were injected citrate buffer. Rats were tested for hyperglycaemia 4 days after STZ injection and 7–8 weeks later when they were used for the experiments. Following anaesthesia (1 g kg–1 urethane I.P.), laparotomy was performed and the pancreatic duct cannulated for collection of pure pancreatic juice. Basal pancreatic juice flow rate in diabetic rats was significantly (p < 0.001) increased whereas protein and amylase outputs were significantly (p < 0.001) decreased compared to control rats. Insulin (1 IU, I.P.) produced in healthy rats significant increases in pancreatic flow rate, amylase secretion and protein output compared to basal (p < 0.05). Insulin action also included a reduction in blood glucose (152.7 ± 16.9 mg dl–1, n= 6, prior to insulin and 42.0 ± 8.4 mg dl–1, n= 4, 100 min later). In fact, flow rate and glycaemia showed a strong negative correlation (p < 0.01, Pearson). Pretreatment with atropine (0.2 mg kg–1, I.V.) abolished the effects of insulin on secretory parameters despite a similar reduction in glycaemia; in this series of experiments the correlation between flow rate and blood glucose was lost. In diabetic rats, insulin (4 IU, I.P.) did not modify exocrine pancreatic secretion. There was a fall in blood glucose (467.6 ± 14.0 mg dl–1, n= 10, prior to insulin and 386.6 ± 43.6 mg dl–1, n= 7, 120 min later). Rats, however, did not become hypoglycaemic. Similar results were observed in diabetic atropinized rats. The results of this study indicate that the effects of insulin on exocrine pancreatic secretion in anaesthetised healthy rats are mediated by hypoglycaemia-evoked vagal cholinergic activation. (Mol Cell Biochem 261: 105–110, 2004)  相似文献   

17.
The present study was aimed to evaluate the preventive effects of (–) epicatechin on alterations in the activities/levels of adenosine triphosphatases and minerals in isoproterenol‐induced myocardial infarcted rats. Male albino Wistar rats were pretreated with (–) epicatechin (20 mg/kg body weight) daily for a period of 21 days. After the pretreatment period, rats were induced myocardial infarction by isoproterenol (100 mg/kg body weight) on 22nd and 23rd day. The activity of sodium/potassium‐dependent adenosine triphosphatase was decreased, and the activities of calcium‐ and magnesium‐dependent adenosine triphosphatases were increased in the heart of isoproterenol‐induced myocardial infarcted rats. In addition, the concentrations of potassium were decreased and the concentrations of sodium and calcium were increased in the heart of isoproterenol‐induced rats. Elevated plasma lipid peroxidation was noted in isoproterenol‐induced rats. Prior treatment with (–) epicatechin significantly prevented the alterations in the activities and concentrations of adenosine triphosphatases, minerals, and plasma lipid peroxidation. The in vitro study confirmed the reducing property of (–) epicatechin. The observed effects in this study are attributed to the membrane‐stabilizing and antioxidant properties of (–) epicatechin. The findings of this study will be beneficial to prevent the occurrence of myocardial infarction. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:516‐521, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21461  相似文献   

18.
BackgroundMyocardial infarction (MI) is a lethal manifestation of cardiovascular diseases. Oxidative stress, inflammation, and subsequent cell death are known to play crucial roles in the pathogenesis of MI. Despite tremendous developments in interventional cardiology, there is need for novel drugs for the prevention and treatment of MI. For the development of novel drugs, usage of natural products has gained attention as a therapeutic approach for ischemic myocardial injury. Among many popular plant-derived compounds, Nootkatone (NKT), a natural bioactive sesquiterpene, abundantly found in grapefruit, has attracted attention for its plausible health benefits and pharmacological properties.PurposeThe present study investigated the cardioprotective effects of NKT in rats against MI induced by isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist that produces MI in a physiologically relevant manner.MethodsMI was induced in male Wistar albino rats by subcutaneous injection of ISO (85 mg/kg body weight) on 9th and 10th day. Rats were pre- and co-treated with NKT (10 mg/kg) through daily oral administration for eleven days.ResultsISO-induced MI was characterized by a significant decline in cardiac function, increased serum levels of cardiomyocyte injury markers, enhanced oxidative stress, and altered PI3K/Akt and NrF2/Keap1/HO-1 signaling pathways. ISO also elevated the levels of myocardial pro-inflammatory cytokines, promoted lysosomal dysfunction, altered TLR4-NFκB/MAPK signaling, and triggered intrinsic apoptotic pathway in heart tissues. However, NKT administration significantly restored or modulated majority of the altered biochemical and molecular parameters in ISO-treated rats. Furthermore, histopathological observations confirmed the myocardial restoring effect of NKT.ConclusionThe present study concludes the cardioprotective effects and underlying mechanisms of NKT against ISO-induced MI in rats, and suggests that NKT or plants containing NKT could be an alternative to cardioprotective agents in ischemic heart diseases.  相似文献   

19.
The risk of zinc (Zn) phytotoxicity in soils has increased in various regions following application of different anthropogenic materials. In order to assess the relative efficiency of Fe oxide and calcite in sorbing Zn and hence alleviating Zn phytotoxicity, we grew oilseed rape for 28 days in pots containing Zn-loaded model substrates consisting of Fe oxide (ferrihydrite)-coated sand (FOCS, 0.2–0.5 mm, 0.3 m2 ferrihydrite g–1 sand) and calcium carbonate (calcite) sand (CCS, 0.2–0.5 mm, 0.3 m2 calcite g–1 sand). Five substrates containing 5, 10, 20, 40, and 80% FOCS and supplied with ZnSO4 at a rate of 30, 100, 300, and 1000 mg Zn kg–1 were used in the cropping experiment and in an in vitro study of Zn desorption for 62 days. Plants exhibited good growth and a similar dry matter yield (DMY) at the 30 and 100 mg Zn kg–1 rates. On the other hand, DMY was markedly reduced at the 300 and, especially, at the 1000 mg Zn kg–1 rate, particularly for the substrates with the higher FOCS proportions. Symptoms of phytotoxicity (viz. chlorosis, purple colouration due to P deficiency) were apparent at such rates and were accompanied by high Zn concentrations in both shoot (average values >1000 and >1500 mg Zn kg–1 dry matter for the 300 and 1000 mg Zn kg–1 rate, respectively) and root (average values >2500 and >6000 mg Zn kg–1 dry matter for the 300 and 1000 mg Zn kg–1 rate, respectively). Total Zn uptake was maximal at 300 mg Zn kg–1. The results of water extractable Zn in the substrate after cropping and the dissolved Zn concentrations measured in substrate–water systems (desorption experiment) suggest that, on a surface area basis, calcite is more effective than Fe oxide to retain Zn and thus alleviate phytotoxicity at high Zn loadings. However, the Zn-sorption capacity of the Fe oxide cannot be neglected, particularly at low Zn loadings, where Fe oxide seems to exhibit a higher affinity for Zn – but not a higher Zn-sorption capacity – than does calcite.  相似文献   

20.
Our study evaluates the preventive effect of S-allyl cysteine sulfoxide (SACS) on lipid peroxidative products and enzymic and nonenzymic antioxidants in isoproterenol (ISO) induced myocardial infarction in rats. The male Wistar rats were rendered myocardial infarction by ISO (150 mg kg(-1), once a day for two days). The concentrations of thiobarbituric acid reactive substances and lipid hydroperoxides were increased in hearts from ISO-treated rats, whereas the content of enzymic and nonenzymic antioxidants were declined in rats administered ISO. Oral pretreatment with SACS (40 mg kg(-1) and 80 mg kg(-1) daily for a period of 35 days) significantly (p < 0.05) decreased the lipid peroxidative products and significantly (p < 0.05) increased antioxidants in ISO-induced rats. Oral administration of SACS (40 mg kg(-1) and 80 mg kg(-1)) did not show any significant effect in normal rats. Thus, the present study shows that SACS exhibits antilipoperoxidative and antioxidant effects in experimental myocardial infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号