首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Factors involved in vivo and in vitro maturation of canine oocytes   总被引:2,自引:0,他引:2  
The domestic dog could be a valuable model for studying and developing assisted reproduction in taxonomically related endangered Canids. However, the efficiency of in vitro oocyte maturation is very low in this species compared to that of other mammalian species and this limits the development of reproductive biotechnologies, such as in vitro embryo production, cryopreservation, or nucleus transfer. In canine species the female gamete has unique characteristics: the oocyte is exposed to high concentration of progesterone in the follicular environment, it is ovulated in the dictyate state, and resumes and completes meiosis in the oviduct. Therefore, optimum conditions for in vitro maturation of dog oocytes may differ from other mammalian models in which follicles, where estrogens are the dominant hormones, ovulate oocytes at the Metaphase II stage of the first meiotic division. An in vitro culture system needs to be based on in vivo conditions in order to create a microenvironment similar to that in which oocyte development occurs physiologically, but little is known on mechanisms regulating oocyte maturation in the dog. This review analyzes the known factors involved in canine oocyte maturation in vivo and in vitro in order to suggest on which aspects future investigations may be focused.  相似文献   

2.
Climate change represents a significant environmental challenge to human welfare. One of many negative impacts may be on animal reproduction. Elevated ambient temperature unfavourably influences reproductive processes in mammals. High temperature can affect reproductive processes such as follicle development and may alter follicular fluid concentrations of amino acids, fatty acids, minerals, enzymes, antioxidants defence and growth factors. These impacts may lead to inferior oocyte competence and abnormal granulosa cell (GCs) function. Mammalian oocytes are enclosed by GCs that secret hormones and signalling molecules to promote oocyte competence. GCs are essential for proper follicular development, oocyte maturation, ovulation, and luteinization. Many environmental stressors, including thermal stress, affect GC function and alter oocyte development and growth. Several studies documented a link between elevated ambient temperature and increased generation of cellular reactive oxygen species (ROS). ROS can damage DNA, reduce cell proliferation, and induce apoptosis in GCs, thus altering oocyte development. Additionally, thermal stress induces upregulation of thermal shock proteins, such as HSP70 and HSP90. This review provides an update on the influence of thermal stress on GCs of mammals. Discussions include impacts to steroidogenesis (estradiol and progesterone), proliferation and cell cycle transition, apoptosis, oxidative stress (ROS), antioxidants related genes, heat shock proteins (HSPs) and endoplasmic reticulum responses.  相似文献   

3.
To evaluate multiple follicular development synchronization after estrogen stimulation in prepubertal mice, follicular responsiveness to gonadotropin superovulation, the prospective reproductive potential and ovarian polycystic ovary syndrome (PCOS)-like symptoms at adulthood, prepubertal mice were intraperitoneally injected with estrogen to establish an animal model with solvent as control. When synchronized tertiary follicles in ovaries, in vitro oocyte maturation and fertilization rates, blastocyst formation rate, developmental potential into offspring by embryo transfer, adult fertility and PCOS-like symptoms, and involved molecular mechanisms were focused, it was found that estrogen stimulation (10μg/gBW) leads to follicular development synchronization at the early tertiary stage in prepubertal mice; reproduction from oocytes to offspring could be realized by means of the artificial reproductive technology though the model mice lost their natural fertility when they were reared to adulthood; and typical symptoms of PCOS, except changes in inflammatory pathways, were not remained up to adulthood. So in conclusion, estrogen can lead to synchronization in follicular development in prepubertal mice, but does not affect reproductive outcome of oocytes, and no typical symptoms of PCOS remained at adulthood despite changes related to inflammation.  相似文献   

4.
Ding J  Foxcroft GR 《Theriogenology》1994,41(7):1473-1481
Follicular secretions can support cytoplasmic maturation in vitro in the pig. The effects of follicular secretions stimulated in vitro by different combinations of gonadotropins and over different culture periods on cytoplasmic maturation of the pig oocyte were studied. In Experiment 1, follicular shells (including theca and mural granulosa cells) from 5 to 7-mm follicles were cultured in vitro under the stimulation of different combinations of gonadotropins for 48 h, and then the obtained conditioned media were used for oocyte maturation. Oocytes cultured in conditioned medium harvested after treatment of follicular shells with 2.5 mug/ml FSH (FSH-stimulated conditioned medium) yielded a higher percentage of male pronuclear formation than those matured in conditioned medium harvested after culture of follicular shells with a combination of hormones (2.5mug/ml FSH, 2.5 mug/ml LH and 20 ng/ml PRL, FSH-LH-PRL-stimulated conditioned medium; 54.1 vs 28.5%; P=0.001). Addition of the combination of FSH, LH and PRL during the period of oocyte maturation marginally improved male pronuclear formation rates (41.3 vs 55.6%; P=0.06). In Experment 2, follicular shells were cultured under the stimulation of FSH only. Conditioned media were harvested after the first 24 h and the second 24 h of culture. The rates of male pronuclear formation in oocytes matured in these 2 conditioned media did not differ (P=0.65), but were higher than those of oocytes matured in fresh control medium (P<0.03). It is concluded that factors secreted by follicular cells stimulated by FSH alone provide better support for full oocyte maturation in the pig than by combined FSH, LH and PRL treatment.  相似文献   

5.
Mature antral follicles were removed from the ovaries of pregnant mare serum gonadotropin (PMSG)-primed hamsters at proestrus prior to the LH surge. Following various incubation times with either LH (ovine) or FSH (rat), cAMP levels were determined in whole follicles, cumulus-oocyte complexes (COCs), and zona-intact or zona-free oocytes. LH produced a dose- and time-dependent change in follicle cAMP but had a minimal effect on the COCs and caused no change in cAMP in zona-free oocytes. By contrast, rFSH stimulated a small rise in follicular cAMP but significantly increased levels in COCs and zona-free oocytes. In a second series of experiments follicles were exposed for short periods to various additives after which they were washed and returned to hormone-free medium for a 6-hr total incubation period. LH (1 microgram/ml) initiated maturation in follicle-enclosed oocytes after a 5- to 15-min exposure period while groups incubated with 100 ng/ml required 60 min. FSH did not stimulate maturation after a 60-min exposure and when combined with 1 microgram or 100 ng/ml of LH negated the maturational effects seen with LH alone. It was postulated that the reason that lower concentrations of LH did not stimulate maturation following short-term incubations was due to an insufficient rise in cAMP. However, neither dbcAMP nor forskolin augmented the capacity of LH to initiate maturation following short-term exposure. By contrast dbcGMP and the guanylate cyclase activator, sodium nitroprusside (NP) did augment the maturation-inducing effects of LH. NP + LH raised cGMP concentrations in the follicle and oocyte and decreased follicular cAMP at 30 and 120 min. The results of this study indicate that the component cells within a follicle respond selectively with cAMP changes, depending on the gonadotropin, in a variable time- and dose-dependent manner. While LH is the more potent activator of cAMP in whole follicles, cAMP levels in the cumulus oophorus and oocyte show the greatest increase following exposure to FSH. LH was the more potent initiator of maturation, possibly through its effects on the mural granulosa cells. FSH appears to exert a more inhibitory role which may be due in part to elevated cAMP levels and/or a putitative inhibitor in the COC and oocyte.  相似文献   

6.
7.
Exogenous gonadotropins are used to stimulate ovarian follicular growth and ovulation in mammalian species, including wild cats. However, successes in application of assisted reproduction techniques in nondomestic felids have been sparse. Our objectives were to assess the effectiveness of alternating gonadotropin regimens on ovarian responses. Five adult female ocelots and four adult female tigrinus were treated four to six times, using alternating eCG/hCG and pFSH/pLH at 4-month intervals. Laparoscopies were done to assess follicular development and to collect oocytes from matures follicles. The average number of follicles and corpus luteum (CL) per stimulation was higher in ocelots (7.0 +/- 0.8; mean +/- S.E.M.) than in tigrinus (2.5 +/- 0.4; P < 0.05), but the percentage of mature oocytes did not differ between the two species (mean range, 54-55%). Within species, both gonadotropin regimens were equally effective in inducing follicular growth and oocyte maturation. The total number of ovarian structures and oocyte maturation percentages did not decrease in either species with sequential stimulations. In summary, female ocelots and tigrinus continued to respond to repeated alternating ovarian stimulation protocols. In conclusion, the use of alternating gonadotropin regimens may permit more intensive reproductive management in these endangered cats.  相似文献   

8.
9.
Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature.  相似文献   

10.
In vitro ovarian follicle culture is a new frontier in assisted reproductive technology with tremendous potential, especially for fertility preservation. Folliculogenesis within the ovary is a complex process requiring interaction between somatic cell components and the oocyte. Conventional two-dimensional culture on tissue culture substrata impedes spherical growth and preservation of the spatial arrangements between oocyte and surrounding granulosa cells. Granulosa cell attachment and migration can leave the oocyte naked and unable to complete the maturation process. Recognition of the importance of spatial arrangements between cells has spurred research in to three-dimensional culture system. Such systems may be vital when dealing with human primordial follicles that may require as long as three months in culture. In the present work we review pertinent aspects of in vitro follicle maturation, with an emphasis on tissue-engineering solutions for maintaining the follicular unit during the culture interval. We focus primarily on presenting the various 3-dimensional culture systems that have been applied for in vitro maturation of follicle:oocyte complexes. We also try to present an overview of outcomes with various biomaterials and animal models and also the limitations of the existing systems.  相似文献   

11.
Insulin-like growth factor-I (IGF-I) is involved in the regulation of ovarian follicular development and has been shown to potentiate the FSH responsiveness of granulosa cells from preantral follicles. The aim of the present study was to investigate the effect of IGF-I during preantral follicular culture on steroidogenesis, subsequent oocyte maturation, fertilization, and embryo development in mice. Preantral follicles were isolated mechanically and cultured for 12 days in a simplified culture medium supplemented with 1% fetal calf serum, recombinant human FSH, transferrin, and selenium. In these conditions, follicles were able to grow and produce oocytes that could be matured and fertilized. The first experiment analyzed the effect of different concentrations of IGF-I (0, 10, 50, or 100 ng/ml) added to the culture medium on the follicular survival, steroidogenesis, and the oocyte maturation process. The presence of IGF-I during follicular growth increased the secretion of estradiol but had no effect on the subsequent oocyte survival and maturation rates. In the second experiment, IGF-I (0 or 50 ng/ml) was added to the culture medium during follicular growth, oocyte maturation, or both, and subsequent oocyte fertilization and embryo development rates were evaluated. Oocyte fertilization rates were comparable in the presence or absence of IGF-I. However, the blastocyst development rate was enhanced after follicular culture in the presence of IGF-I. Moreover, the total cell number of the blastocysts observed after differential labeling staining was also higher when follicles were cultured or matured in the presence of IGF-I.  相似文献   

12.
At present, there is no well-characterized animal model to study the effects of aging on fertility in women. The objectives of the study were to characterize age-related changes in ovarian and endocrine functions in old cows and to investigate the validity of a bovine model for the study of human reproductive aging. We tested the hypotheses that aging in cattle is associated with 1) elevated concentrations of gonadotropins and reduced concentrations of steroid hormones in systemic circulation and 2) increased recruitment of ovarian follicles during wave emergence. Daily ultrasonography was performed in 13- to 14-yr-old cows (n = 10) and their 1- to 4-yr-old daughters (n = 9) for one interovulatory interval to study ovarian function. Plasma samples were obtained every 12 h for determination of FSH, LH, progesterone, and estradiol concentrations. Circulating FSH concentrations were higher (P = 0.009) during follicular waves in old cows than in their daughters, but the number of 4- to 5-mm follicles recruited into a wave was lower (P = 0.04) in old cows. Plasma LH concentrations did not differ between groups (P = 0.4), but the ovulatory follicle in two-wave cycles was smaller in old cows (P = 0.04). Plasma estradiol concentrations were higher (P = 0.01) in old cows, and luteal phase progesterone tended to be lower (P = 0.1). We conclude that these changes are consistent with those reported for women approaching menopause transition. Therefore, our results validate the use of the bovine model to study reproductive aging in women.  相似文献   

13.
邢华 《动物学杂志》2009,44(6):160-165
犬(Canis familiaris)是生物医学研究的最重要模型动物之一.但由于生殖生理的特殊性,其卵母细胞的体外培养成熟率低,辅助生殖研究进展缓慢,严重制约了该动物在生物科学研究中的运用.在犬科动物体内,排卵前卵母细胞处于高浓度孕酮的卵泡环境中,在生发泡期排到输卵管内,并在此恢复和完成减数分裂.因此,犬卵母细胞体外成熟所需的条件不同于其他哺乳动物,目前主要采用以添加相关因子的M199作为培养液,但体外培养发育至MⅡ期的比率仅为15%~20%.所以,必须在了解犬卵母细胞体内成熟机制的基础上,建立一套类似于体内生理环境的体外成熟培养体系.本文在阐述犬卵母细胞体内成熟生理过程的基础上,对其体外成熟培养方法和影响因素的研究现状进行分析,为相关研究提供参考.  相似文献   

14.
15.
This study examines the influence of follicular maturation as well as the role of various hormones upon the secretion of an oocyte maturation inhibitor (OMI) from porcine granulosa cells incubated in vitro. The results demonstrate that the OMI substance, secreted into the media by granulosa cells, is present in a low molecular-weight fraction (< 10,000 daltons) similar to that found in follicular fluid of porcine antral follicles. Also, as follicular development progresses, the granulosa cells lose their ability to secrete OMI. More importantly, hormones appear to regulate OMI secretion: FSH stimulates OMI secretion and androgens inhibit OMI secretion. These data provide evidence for the proposal of the following hypothesis concerning hormonal regulation of oocyte, meiosis by OMI in the porcine follicle: Whether the oocyte resumes meiosis, either during atresia or ovulation, is dependent upon the proper milieu of gonadotropins, cyclic-AMP, and steroids within the microenvironment of the follicular compartment. The cellular interactions of these hormones, particularly FSH and androgens, control the amount of OMI (and possibly other intrafollicular factors) secreted in the follicle, which may be involved in either maintaining the immature state or permitting meiotic maturation.  相似文献   

16.
The developmental requirements of ovarian follicles are dependent on the maturation stage of the follicle; in particular, elegant studies with genetic models have indicated that FSH is required for antral, but not preantral, follicle growth and maturation. To elucidate further the role of FSH and other regulatory molecules in preantral follicle development, in vitro culture systems are needed. We employed a biomaterials-based approach to follicle culture, in which follicles were encapsulated within matrices that were tailored to the specific developmental needs of the follicle. This three-dimensional system was used to examine the impact of increasing doses of FSH on follicle development for two-layered secondary (100-130 microm; two layers of granulosa cells surrounding the oocyte) and multilayered secondary (150-180 microm, several layers of granulosa cells surrounding the oocyte) follicles isolated from mice. Two-layered secondary follicles were FSH responsive when cultured in alginate-collagen I matrices, exhibiting FSH dose-dependent increases in follicle growth, lactate production, and steroid secretion. Multilayered secondary follicles were FSH dependent, with follicle survival, growth, steroid secretion, metabolism, and oocyte maturation all regulated by FSH. However, doses greater than 25 mIU/ml of FSH negatively impacted multilayered secondary follicle development (reduced follicle survival). The present results indicate that the hormonal and environmental needs of the follicular complex change during the maturation process. The culture system can be adapted to each stage of development, which will be especially critical for translation to human follicles that have a longer developmental period.  相似文献   

17.
Unsatisfactory reproductive performance in dairy cows, such as reduced conception rates, in addition to an increased incidence of early embryonic mortality, is reported worldwide and has been associated with a period of negative energy balance (NEB) early post partum. Typically, NEB is associated with biochemical changes such as high non-esterified fatty acid (NEFA), high β-hydroxybutyrate (β-OHB) and low glucose concentrations. The concentrations of these and other metabolites in the follicular fluid (FF) of high-yielding dairy cows during NEB were determined and extensively analyzed, and then were replicated in in vitro maturation models to investigate their effect on oocyte quality. The results showed that typical metabolic changes during NEB are well reflected in the FF of the dominant follicle. However, the oocyte seems to be relatively isolated from extremely elevated NEFA or very low glucose concentrations in the blood. Nevertheless, the in vitro maturation models revealed that NEB-associated high NEFA and low glucose levels in the FF are indeed toxic to the oocyte, resulting in deficient oocyte maturation and developmental competence. Induced apoptosis and necrosis in the cumulus cells was particularly obvious. Furthermore, maturation in saturated free fatty acid-rich media had a carry-over effect on embryo quality, leading to reduced cryotolerance of day 7 embryos. Only β-OHB showed an additive toxic effect in moderately hypoglycemic maturation conditions. These in vitro maturation models, based on in vivo observations, suggest that a period of NEB may hamper the fertility of high-yielding dairy cows through increased NEFA and decreased glucose concentrations in the FF directly affecting oocyte quality. In addition to oocyte quality, these results also demonstrate that embryo quality is reduced following an NEB episode. This important observation may be linked to the typical diet provided to stimulate milk yield, or to physiological adaptations sustaining the high milk production. Research into this phenomenon is ongoing.  相似文献   

18.
The number of growth factors involved in female fertility has been extensively studied, but reluctance to add essential growth factors in culture media has limited progress in optimizing embryonic growth and implantation outcomes, a situation that has ultimately led to reduced pregnancy outcomes. Insulin-like growth factor Ⅱ(IGF-Ⅱ) is the most intricately regulated of all known reproduction-related growth factors characterized to date, and is perhaps the predominant growth factor in human ovarian follicles. This review aims to concisely summarize what is known about the role of IGF-Ⅱ in follicular development, oocyte maturation, embryonic development, implantation success, placentation, fetal growth, and in reducing placental cell apoptosis, as well as present strategies that use growth factors in culture systems to improve the developmental potential of oocytes and embryos in different species. Synthesizing the present knowledge about the physiological roles of IGF-Ⅱ in follicular development, oocyte maturation, and early embryonic development should, on the one hand, deepen our overall understanding of the potential beneficial effects of growth factors in female reproduction and on the other hand support development(optimization) of improved outcomes for assisted reproductive technologies.  相似文献   

19.
Various thiol compounds are known to improve cytoplasmic and/or nuclear maturation of oocytes in vitro. The present study examined the effects of two thiol compounds, cysteine (0.1, 0.5, and 1.0 mM) and cysteamine (50, 100, and 200 microM), on cytoplasmic and nuclear maturation of canine oocytes. Oocytes collected from different reproductive stages were cultured in TCM-199 supplemented with 10% fetal bovine serum, 2.2 mg/ml sodium carbonate, 2.0 microg/ml estrogen, 0.5 microg/ml FSH, 0.03 IU/ml hCG, and 1% penicillin-streptomycin solution for 72 h. Data were analyzed by two-way ANOVA after arcscine transformation and protected by Bonferroni post hoc test. The effects of cysteine and cysteamine on canine IVM were varied depending on the reproductive stage of oocyte donor bitches. In the follicular stage, significantly more oocytes reached the metaphase II (M II) stage when cultured with 0.5 or 1.0 mM cysteine (16.7% and 16.9%, respectively) compared to the control (6.2%). In the follicular stage, cysteamine increased oocyte maturation rate upto the M II stage (15.1% to 17.0%) compared to the control (4.4%). Both the 0.5 mM cysteine and 100 microM cysteamine, alone or together, increased the intracellular GSH level of canine oocytes compared to the control. Irrespective of reproductive stage, no further beneficial effects on nuclear or cytoplasmic maturation were observed when 0.5 mM cysteine and 100 microM cysteamine were supplemented together. In conclusion, addition of 0.5 mM cysteine and 100 microM cysteamine to the maturation medium improved IVM of canine oocytes.  相似文献   

20.
Zhang M  Tao Y  Xia G  Xie H  Hong H  Wang F  Lei L 《Theriogenology》2005,64(4):902-916
This study examined the effect of atrial natriuretic peptide (ANP) on porcine cumulus-enclosed oocyte (CEO) maturation and cumulus expansion. ANP negatively regulated follicle-stimulating hormone (FSH)-stimulated germinal vesicle breakdown (GVBD; 90.1, 81.2 and 68.2% for FSH, FSH+10nM ANP and FSH+1 microM ANP, respectively), first polar body emission (PB1; 86.1, 75.3 and 53.3% for FSH, FSH+1 nM ANP and FSH+1 microM ANP, respectively) and cumulus expansion (CEI; 3.47, 3.16 and 2.43 for FSH, FSH+1 nM ANP and FSH+1 microM ANP, respectively) in a dose-dependent manner when CEOs were cultured in the maturation medium containing porcine follicular fluid (pFF). This negative effect showed a time-dependent manner after preincubation with 100 nM ANP for 5h (78.4% PB1), 10h (81.7% GVBD and 74.1% PB1), 20 h (78.5% GVBD and 68.9% PB1), and 44 h (75.3% GVBD and 60.5% PB1), respectively. ANP also significantly inhibited FSH-induced porcine oocyte GVBD (47.6% versus 83.8%) and PB1 emission (22.4% versus 45.2%) when CEOs were cultured in pFF-free maturation medium. cGMP analog 8-Br-cGMP (10 microM to 1mM) mimicked the effects of ANP on GVBD, PB1, and CEI. The negative effect of ANP was completely reversed by KT5823 (a specific inhibitor of cGMP-dependent protein kinase), while C-ANP-(4-23) (an analogue of ANP and specific binder for natriuretic peptide receptors-C) was ineffective in oocyte maturation. Neither ANP nor C-ANP-(4-23) had an effect on spontaneous porcine oocyte maturation and cumulus expansion. These results suggested that ANP negatively regulates FSH-activated porcine oocyte meiotic resumption, meiotic maturation and cumulus expansion. The function of ANP on porcine oocyte maturation is via the cGMP dependent protein kinase (PKG) pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号