首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Structure of the rat gene encoding cholesterol 7 alpha-hydroxylase   总被引:5,自引:0,他引:5  
D F Jelinek  D W Russell 《Biochemistry》1990,29(34):7781-7785
Cholesterol 7 alpha-hydroxylase (7 alpha-hydroxylase) is a microsomal cytochrome P-450 that catalyzes the first and rate-limiting step in bile acid biosynthesis, the major catabolic pathway in cholesterol homeostasis. The gene encoding the rat 7 alpha-hydroxylase has been isolated and characterized. Southern blotting experiments demonstrated that the gene is present in a single copy in the rat genome. DNA sequence analysis showed that the 7 alpha-hydroxylase gene is unique among the characterized cytochrome P-450s in that it contains only six exons. Nuclease S1 and primer-extension mapping experiments positioned the 5'-ends of the 7 alpha-hydroxylase mRNA approximately 20-25 nucleotides downstream of a consensus TATAAA sequence. RNA blotting experiments demonstrated the presence of multiple 7 alpha-hydroxylase mRNAs that differ in the lengths of their 3'-untranslated regions.  相似文献   

4.
The effect of in vivo variation of hepatic glutathione (using diethyl maleate and L-cysteine) on in vitro cholesterol 7 alpha-hydroxylase activity was studied in male Sprague-Dawley rats. Cholesterol 7 alpha-hydroxylase activity in glutathione-depleted rats (ca. 10% of control glutathione) was significantly reduced compared to that in vehicle-injected controls. While L-cysteine treatment of glutathione-depleted animals increased glutathione levels somewhat (ca. 20% of control glutathione), they were still significantly less than control levels. Similarly, cholesterol 7 alpha-hydroxylase activity in the partially glutathione replete animals was approximately 50% greater than that in the glutathione-depleted animals, but still significantly less than that in the controls. The rate of 7 alpha-hydroxylation of cholesterol was found to be dependent on liver glutathione content. The calculated maximal rate was 34.4 picomoles/mg/min with a half maximal activity at 1.89 mumoles glutathione/gm liver. These results suggest that hepatic glutathione may be an important modulator of in vivo activity of cholesterol 7 alpha-hydroxylase.  相似文献   

5.
L-Gulono-gamma-lactone oxidase, one of the microsomal flavin enzymes, catalyzes the last step of L-ascorbic acid biosynthesis in many animals; however, it is missing in scurvy-prone animals such as humans, primates, and guinea pigs. A cDNA clone for this enzyme was isolated by screening a rat liver cDNA expression library in lambda gt11 using antibody directed against the enzyme. The cDNA clone contained 2120 nucleotides and an open reading frame of 1320 nucleotides encoding 440 amino acids of the protein with a molecular weight of 50,605. The amino-terminal sequence (residues 1-33) of the enzyme isolated from rat liver completely coincided with the corresponding part of the deduced amino acid sequence. The identity of the cDNA clone was further confirmed by the agreement of the composition of the deduced amino acids with that determined by amino acid analysis of the enzyme. Hydropathy analysis of the deduced amino acid sequence revealed several hydrophobic regions, suggesting that they anchor the protein into the microsomal membrane. The deduced amino acid sequence showed no obvious homology with the flavin-binding regions of other eight flavoenzymes.  相似文献   

6.
7.
8.
Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7alpha-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12alpha-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19-23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7alpha-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool.  相似文献   

9.
Addition of foetal-bovine serum to rat hepatocytes cultured in Williams E medium resulted in improved maintenance of bile-acid-synthetic capacity and cholesterol 7 alpha-hydroxylase activity as compared with cultures supplemented with rat or newborn-bovine serum or cultures in a hormonally defined serum-free medium. Minimally, 5% (v/v) foetal-bovine serum was necessary to maintain these liver-specific functions. Serum factor(s) responsible for these effects were not dialysable or associated with lipoproteins, but were removed by charcoal extraction.  相似文献   

10.
The conversion of cholesterol to 7alpha-hydroxycholesterol catalyzed by cytochrome P450 7A1 (CYP7A1) initiates the major pathway for cholesterol elimination in mammals. In the present work we focused on identification of determinants of the CYP7A1 substrate specificity inside the active site using a homology model with a novel P450-fold, site-directed mutagenesis, and substrate-binding and kinetic studies. Forty-one mutants, encompassing twenty-six amino acid residues, were generated and characterized, and of these, seven residues appear to determine cholesterol binding in the active site. In addition, four cholesterol derivatives were used as active site probes in the wild type and the seven mutant enzymes, and the spectral binding constants and products were analyzed. It was concluded that Asn288 in the I helix plays a key role in the P450-cholesterol contacts by hydrogen bonding to the steroid 3beta-hydroxyl, while Val280 and Ala284 are beside and the Trp283 is above the steroid nucleus orienting the cholesterol molecule. Leu360 and Ala358 between the K helix and the beta1-4 strand and Leu485 in the beta4 sheet-turn appear to define the size of the active site over the heme pyrrole ring A, thus limiting the orientation and size of the substrate at the steroid A ring. Additionally, the A358V mutant was found to form two new products, one being 7beta-hydroxycholesterol. Our data indicate that a tight fit of cholesterol in the enzyme active site is in part responsible for the high efficiency of cholesterol turnover by CYP7A1.  相似文献   

11.
The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-Å resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.  相似文献   

12.
To study the effect of steroid hormones on bile acid synthesis by cultured rat hepatocytes, cells were incubated with various amounts of these compounds during 72 h and conversion of [4-14C]cholesterol into bile acids was measured. Bile acid synthesis was stimulated in a dose-dependent way by glucocorticoids, but not by sex steroid hormones, pregnenolone or the mineralocorticoid aldosterone in concentrations up to 10 microM. Dexamethasone proved to be the most efficacious inducer, giving 3-fold and 7-fold increases in bile acid synthesis during the second and third 24 h incubation periods respectively, at a concentration of 50 nM. Mass production of bile acids as measured by g.l.c. during the second day of culture (28-52 h) was 2.2-fold enhanced by 1 microM-dexamethasone. No change in the ratio of bile acids produced was observed during this period in the presence of dexamethasone. Conversion of [4-14C]7 alpha-hydroxycholesterol, an intermediate of the bile acid pathway, to bile acids was not affected by dexamethasone. Measurement of cholesterol 7 alpha-hydroxylase activity in homogenates of hepatocytes, incubated with 1 microM-dexamethasone, showed 10-fold and 90-fold increases after 48 and 72 h respectively, as compared with control cells. As with bile acid synthesis from [14C]cholesterol, no change in enzyme activity was found in hepatocytes cultured in the presence of 10 microM steroid hormones other than glucocorticoids. Addition of inhibitors of protein and mRNA synthesis lowered bile acid production and cholesterol 7 alpha-hydroxylase activity and prevented the rise of both parameters with dexamethasone, suggesting regulation at the mRNA level. We conclude that glucocorticoids regulate bile acid synthesis in rat hepatocytes by induction of enzyme activity of cholesterol 7 alpha-hydroxylase.  相似文献   

13.
M Noshiro  K Okuda 《FEBS letters》1990,268(1):137-140
A complete cDNA clone encoding human cholesterol 7 alpha-hydroxylase has been isolated using a rat P-450ch7 alpha cDNA insert [(1989) FEBS Lett. 257, 97-100] as a probe and totally sequenced. The cDNA contained 1512-base pair open reading frame encoding 504 amino acid residues (Mr 57,630), 39-base pair 5'-untranslated region 1322-base pair 3'-ultranslated region including 20 nucleotides of poly A tail in the total length of 2873 base pairs. The deduced amino acid sequence showed 82% similarity to rat P-450ch7 alpha. Unique amino acid residues were observed in putative binding domains for heme and steroid which are highly conserved in most steroidogenic P-450s.  相似文献   

14.
15.
To study the effect of cholecystectomy on the regulation of classic and alternative bile acid syntheses, gallbladder-intact (n = 20) and cholecystectomized (n = 20) New Zealand White rabbits were fed either chow or chow with 2% cholesterol (3 g/day). After 10 days, bile fistulas were constructed in half of each rabbit group to recover and measure the bile acid pool and biliary bile acid flux. After cholesterol feeding, the bile acid pool size increased from 268 +/- 55 to 444 +/- 77 mg (P < 0.01) with a 2-fold rise in the biliary bile acid flux in intact rabbits but did not expand the bile acid pool (270 +/- 77 vs. 276 +/- 62 mg), nor did the biliary bile acid flux increase in cholecystectomized rabbits. Ileal apical sodium-dependent bile acid transporter protein increased 46% from 93 +/- 6 to 136 +/- 23 units/mg (P < 0.01) in the intact rabbits but did not change in cholecystectomized rabbits (104 +/- 14 vs. 99 +/- 19 units/mg) after cholesterol feeding. Cholesterol 7alpha-hydroxylase activity was inhibited 59% (P < 0.001) while cholesterol 27-hydroxylase activity rose 83% (P < 0.05) after cholesterol feeding in the intact rabbits but neither enzyme activity changed significantly in cholesterol-fed cholecystectomized rabbits. Fecal bile acid outputs reflecting bile acid synthesis increased significantly in the intact but not in the cholecystectomized rabbits fed cholesterol.Removal of the gallbladder prevented expansion of the bile acid pool after cholesterol feeding as seen in intact rabbits because ileal bile acid transport did not increase. As a result, cholesterol 7alpha-hydroxylase was not inhibited.  相似文献   

16.
Changes in the activity of guinea pig liver cholesterol 7 alpha-hydroxylase (rate limiting enzyme of cholesterol catabolism) from birth to adult life was investigated using a microsomal acetone extraction method (to remove endogenous cholesterol). Contrary to the previously held notion, it was noted that while the total bile acid pool increased progressively with age after birth, hepatic cholesterol 7 alpha-hydroxylase specific activity declined. Neonatal hepatic cholesterol 7 alpha-hydroxylase showed an increase in enzyme activity in response to cell supernatant factors (100,000 xg supernatant) from neonatal livers, but not from adult livers.  相似文献   

17.
Circadian rhythms of important enzymes involved in the conversion of cholesterol to bile acids [sterol 12alpha-hydroxylase (12alpha-hydroxylase) and cholesterol 7alpha-hydroxylase (7alpha-hydroxylase)] and an albumin site D-binding protein (DBP) were examined in rats. When the animals were fed freely, they usually ate in the dark and the circadian rhythms of activities of 12alpha-hydroxylase and 7alpha-hydroxylase showed the same peaks (at 10 p.m.) and lows (at 2 p.m.). Their mRNA levels were determined at four timepoints: 3 a.m., 10 a.m., 3 p.m. and 10 p.m. A maximum of the rhythm of 12alpha-hydroxylase was observed at 3 p.m. and the minimum at 3 a.m. These results are distinct from those of 7alpha-hydroxylase, whose maximum point was at 10 p.m. and minimum at 3 p.m. When the rats were fed only in the day-time (from 9 a.m. to 5 p.m.), a marked shift of the activity and mRNA rhythms was observed with both enzymes. The circadian rhythms of the activities of both enzymes showed the same peaks (at 3 p.m.), but the mRNA levels of 12alpha-hydroxylase were distinct from those of 7alpha-hydroxylase, whose maximum point was at 3 a.m. and minimum at 10 p.m. Differences between the maximum and the minimum points of each enzyme mRNA level were statistically significant (P < 0.01 for 12alpha-hydroxylase and 0.05 for 7alpha-hydroxylase). Moreover, circadian rhythms of DBP were also markedly shifted with the change of feeding period. The maximum mRNA level was observed at 10 p.m. instead of 10 a.m. and the minimum was at 10 a.m. instead of 10 p.m.  相似文献   

18.
Feedback regulation of bile acid biosynthesis in the rat   总被引:11,自引:0,他引:11  
The hepatic biosynthesis of bile salts in the rat has been shown to be controlled homeostatically by the quantity of bile salt returning to the liver via the portal circulation. The feedback mechanism was demonstrated in two kinds of experiments. In the first, rats with bile fistulas were infused intraduodenally with sodium taurocholate 12 hr after surgery. If the rate of infusion was greater than 10 mg per 100 g rat per hr, the increase in bile acid output normally observed in bile fistula rats was prevented. In the second type of experiment, the rats were infused with taurocholate 48-72 hr after biliary diversion, when bile acid output had reached a maximal value. Provided the rate of infusion exceeded 10 mg per 100 g rat per hr, bile acid secretion returned to the low levels observed in intact rats. Previous attempts to demonstrate the feedback control have been unsuccessful because too little bile salt was infused. The taurocholate pool of the experimental animals was measured as approximately 15 mg per 100 g rat; it was calculated from this and the above results that this pool circulated 10-13 times daily.  相似文献   

19.
We measured hepatic cholesterol 7 alpha-hydroxylase activity, mass, and catalytic efficiency (activity/unit mass) in bile fistula rats infused intraduodenally with taurocholate and its 7 beta-hydroxy epimer, tauroursocholate, with or without mevalonolactone to supply newly synthesized cholesterol. Enzyme activity was measured by an isotope incorporation assay and enzyme mass by densitometric scanning of immunoblots using rabbit anti-rat liver cholesterol 7 alpha-hydroxylase antisera. Cholesterol 7 alpha-hydroxylase activity increased 6-fold, enzyme mass 34%, and catalytic efficiency 5-fold after interruption of the enterohepatic circulation for 48 h. When taurocholate was infused to the bile acid-depleted animals at a rate equivalent to the hepatic bile acid flux (27 mumol/100-g rat/h), cholesterol 7 alpha-hydroxylase activity and enzyme mass declined 60 and 61%, respectively. Tauroursocholate did not significantly decrease cholesterol 7 alpha-hydroxylase activity, mass and catalytic efficiency. The administration of mevalonolactone, which is converted to cholesterol, modestly increased cholesterol 7 alpha-hydroxylase activity and enzyme mass in the bile acid-depleted rats. However, when taurocholate was infused together with mevalonolactone, cholesterol 7 alpha-hydroxylase activity and catalytic efficiency were markedly depressed while enzyme mass did not change as compared with bile acid-depleted rats. These results show that (a) hepatic bile acid depletion increases bile acid synthesis mainly by activating cholesterol 7 alpha-hydroxylase with only a small rise in enzyme mass, (b) replacement with taurocholate for 24 h decreases both cholesterol 7 alpha-hydroxylase activity and mass proportionally, (c) when cholesterol is available (mevalonolactone supplementation), the infusion of taurocholate results in the formation of a catalytically less active cholesterol 7 alpha-hydroxylase, and (d) tauroursocholate, the 7 beta-hydroxy epimer of taurocholate, does not inhibit cholesterol 7 alpha-hydroxylase. Thus, bile acid synthesis is modulated by the catalytic efficiency and mass of cholesterol 7 alpha-hydroxylase. The enterohepatic flux of 7 alpha-hydroxylated bile acids and the formation of hepatic cholesterol apparently control cholesterol 7 alpha-hydroxylase by different mechanisms.  相似文献   

20.
Bile acid synthesis involves several enzymes and occurs only in liver cells. The first and rate-determining step is catalyzed by cholesterol 7alpha-hydroxylase (cyp7a). McArdle RH7777 hepatoma cells do not synthesize bile acids and do not express the cyp7a gene. A synthetic cyp7a gene was stably expressed in this cell line to determine if restoration of cyp7a activity is sufficient to reconstitute the bile acid synthetic pathway. The transfected cells contained the recombinant cyp7a mRNA and the corresponding protein. Microsomes from recombinant cells converted cholesterol into 7alpha-hydroxycholesterol, indicating that the recombinant enzyme was active. Radiolabeled bile acids, originated from exogenously supplied radiolabeled cholesterol, were detected in the culture medium of recombinant cells. Thus, expression of cyp7a is sufficient in restoring bile acid synthesis in McArdle RH7777 cells. The results also show that the additional complement of enzymatic activities required to convert cholesterol into bile acids has remained active in this cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号