首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetaminophen is a widely used antipyretic and analgesic drug whose mechanism of action has recently been suggested to involve inhibitory effects on prostaglandin synthesis via a newly discovered cyclooxygenase variant (COX-3). Because COX-3 expression is high in cerebral endothelium, we investigated the effect of acetaminophen on the prostaglandin production of cultured rat cerebral endothelial cells (CECs). Acetaminophen dose-dependently inhibited both basal and LPS-induced PGE(2) production in CECs with IC(50) values of 15.5 and 6.9 microM, respectively. Acetaminophen also similarly inhibited the synthesis of 6-keto-PGF(1alpha) and thromboxane B(2). LPS stimulation increased the expression of COX-2 but not COX-1 or COX-3. In addition, the selective COX-2 inhibitor NS398 (1 microM) was equally as effective as acetaminophen in blocking LPS-induced PGE(2) production. Acetaminophen did not influence the expression of the three COX isoforms and the inducible nitric oxide synthase. In LPS-stimulated isolated cerebral microvessels, acetaminophen also significantly inhibited PGE(2) production. Our results show that prostaglandin production in CECs during basal and stimulated conditions is very sensitive to inhibition by acetaminophen and suggest that acetaminophen acts against COX-2 and not COX-1 or COX-3. Furthermore, our findings support a critical role for cerebral endothelium in the therapeutic actions of acetaminophen in the central nervous system.  相似文献   

2.
Effects of acetaminophen on the renal inner medullary production of prostaglandin E2 and F were compared with the well-known effects of aspirin on this process. Acetaminophen was found to elicit a dose-dependent inhibition of both prostaglandin E2 and F accumulation in media with a Ki of 100–200 μM. This inhibition could not be accounted for by increased accumulation of prostaglandins within slices. Acetaminophen inhibition was reversed by removal of acetaminophen during the incubation or by addition of arachidonic acid. Similar manipulations did not reverse aspirin or indomethacin-mediated inhibition of prostaglandin synthesis. Thin-layer and gas chromatographic analysis of acetaminophen following incubation with slices demonstrated that this material was identical to authentic acetaminophen. This, in addition to the lack of an effect of glutathione on inhibition, suggests that acetaminophen does not have to be metabolized to exert this inhibition. Arachidonic acid did not alter the metabolism or increase the efflux of acetaminophen. Lower levels of prostaglandin E2 observed with 5 mM acetaminophen and 1 mM aspirin caused a corresponding decrease in cyclic AMP content. Removal of acetaminophen from the second incubation or addition of arachidonic acid caused increases in both prostaglandin E2 and cyclic AMP. Aspirin inhibition of cyclic AMP content was not reversed by similar manipulations. In vivo inhibition of inner medullary prostaglandin E2 and prostaglandin F synthesis was observed 2 h after a 375 mg/kg, intraperitoneal injection of acetaminophen. These data suggest that acetaminophen, like aspirin, is capable of reducing tissue prostaglandin synthesis. However, the mechanisms by which these two analgesic and antipyretic agents elicit their inhibition of prostaglandin synthesis are quite different.  相似文献   

3.
Acetaminophen (paracetamol) is a popular domestic analgesic and antipyretic agent with a weak anti-inflammatory action and a low incidence of adverse effects as compared with aspirin and other non-steroidal anti-inflammatory drugs. Here we show that acetaminophen, following deacetylation to its primary amine, is conjugated with arachidonic acid in the brain and the spinal cord to form the potent TRPV1 agonist N-arachidonoylphenolamine (AM404). This conjugation is absent in mice lacking the enzyme fatty acid amide hydrolase. AM404 also inhibits purified cyclooxygenase (COX)-1 and COX-2 and prostaglandin synthesis in lipopolysaccharide-stimulated RAW264.7 macrophages. This novel metabolite of acetaminophen also acts on the endogenous cannabinoid system, which, together with TRPV1 and COX, is present in the pain and thermoregulatory pathways. These findings identify fatty acid conjugation as a novel pathway for drug metabolism and provide a molecular mechanism for the occurrence of the analgesic N-acylphenolamine AM404 in the nervous system following treatment with acetaminophen.  相似文献   

4.
Reduction of toxic metabolite formation of acetaminophen   总被引:5,自引:0,他引:5  
Acetaminophen is a widely used over-the-counter drug that causes severe hepatic damage upon overdose. Cytochrome P450-dependent oxidation of acetaminophen results in the formation of the toxic N-acetyl-p-benzoquinone-imine (NAPQI). Inhibition of cytochrome P450 enzymes responsible for NAPQI formation might be useful--besides N-acetylcysteine treatment--in managing acetaminophen overdose. Investigations were carried out using human liver microsomes to test whether selective inhibition of cytochrome P450s reduces NAPQI formation. Selective inhibition of CYP3A4 and CYP1A2 did not reduce, whereas the inhibition of CYP2A6 and CYP2E1 significantly decreased NAPQI formation. Furthermore, selective CYP2E1 inhibitors that are used in human therapy were tested for their inhibitory effect on NAPQI formation. 4-Methylpyrazole, disulfiram, and diethyl-dithiocarbamate were the most potent inhibitors with IC(50) values of 50 microM, 8 microM, and 33 microM, respectively. Although cimetidin is used in the therapy of acetaminophen overdose as an inhibitor of cytochrome P450, it is not able to reduce NAPQI formation.  相似文献   

5.
Cyclooxygenase-2 and atherosclerosis   总被引:21,自引:0,他引:21  
Cyclooxygenase regulates the production of eicosanoids, which modulate physiologic processes in the vessel wall contributing to atherosclerosis and thrombosis, including platelet aggregation, control of vascular tone, and the local inflammatory response. Cyclooxygenase-1 mediates production of platelet thromboxane A(2), a potent vasoconstrictor and platelet agonist, whereas both cyclooxygenase 1 and 2 contribute to production of endothelial prostacyclin, a vasodilator that inhibits platelet activation. Concerns have been raised that cyclooxygenase-2 inhibitors may increase thrombotic cardiovascular events by disturbing the balance between platelet thromboxane A(2) and endothelial prostacyclin, but this controversial issue will only be resolved by prospective clinical trials. Because cyclooxygenase-2 is upregulated in activated monocyte/macrophages, which play a key role in the pathogenesis of atherosclerosis, we have recently tested the hypothesis that pharmacological inhibition of cyclooxygenase-2 in LDL-receptor deficient mice would reduce early atherosclerosis. After 6 weeks on a Western-type diet, male LDL-receptor deficient mice treated with either rofecoxib (a selective cyclooxygenase-2 inhibitor) or indomethacin (a non-selective cyclooxygenase inhibitor) had significant reductions in atherosclerosis when compared with control mice. Also, LDL-receptor deficient mice null for macrophage cyclooxygenase-2 were generated by fetal liver cell transplantation and developed significantly less atherosclerosis than control LDL-receptor deficient mice transplanted with fetal liver cells wildtype for cyclooxygenase-2, providing genetic evidence in support of a proatherogenic role for macrophage cyclooxygenase-2 expression. These results support the potential of antiinflammatory approaches for the prevention of atherosclerosis and identify cyclooxygenase-2 as a target for intervention.  相似文献   

6.
Recently, a microsomal protein with 38% sequence identity to microsomal glutathione S-transferase 1 was shown to constitute an inducible, glutathione-dependent prostaglandin E synthase (PGES). To investigate the relationship between cyclooxygenase and PGES, a time-course study on protein expression was performed in A549 cells after treatment with interleukin-1beta. The result demonstrated a tandem expression of cyclooxygenase-2 and PGES. The observed induction of PGES protein correlated with microsomal PGES activity. No comparable PGES activity was observed in the absence of glutathione or in the cytosolic fraction. In addition, tumour necrosis factor-alpha was found to induce PGES in these cells. Dexamethasone was found to completely suppress the effect of both cytokines on PGES induction. We also describe a quantitative method, based on RP-HPLC with UV detection for the measurements of PGES activity. This method was used to screen potential PGES inhibitors. Several nonsteroidal anti-inflammatory drugs, stable prostaglandin H2 analogues and cysteinyl leukotrienes were screened for inhibition of PGES activity. NS-398, sulindac sulfide and leukotriene C4 were all found to inhibit PGES activity with IC50 values of 20 microM, 80 microM and 5 microM, respectively. In conclusion, it appears that PGES and cyclooxygenase-2 are functionally coupled in A549 cells and that a required coordinate expression of these enzymes allows for efficient biosynthesis of prostaglandin E2.  相似文献   

7.
Inhibitors of prostaglandin production, designated as classical non-steroidal anti-inflammatory drugs (NSAIDs) and acting on the base of non-selective inhibition of cyclooxygenases, have been found in numerous studies to potentiate recovery of perturbed haematopoiesis by removing the negative feedback control mediated by prostaglandins. However, classical NSAIDs show pronounced undesirable gastrointestinal side effects, which limits the possibility of their utilization for various pathophysiological states including myelosuppression. Specific cyclooxygenase-2 (COX-2) inhibitors, targeted at selective inhibition of this inducible cyclooxygenase isoform and having much better gastrointestinal side effect profile, have been found in recent studies to retain the haematopoiesis-stimulating effects of classical NSAIDs. These results suggest that the indication spectrum of selective COX-2 inhibitors may be extended to the indication of myelosuppression of various etiology. Combining the anti-tumour and haematopoiesis-stimulating activities in a single COX-2 inhibitor may have a positive clinical impact.  相似文献   

8.
Nonnarcotic analgesics include well-known, widely used substances such as acetylsalicylic acid (ASA) and acetaminophen. ASA is a potent inhibitor of prostaglandin synthesis, and this mechanism is responsible for many potential toxicities in the fetus and newborn. These may include bleeding, altered renal function, and constriction of the ductus arteriosus in addition to analgesia. As such, ASA is frequently avoided during gestation and the immediate neonatal period. Acetaminophen is less well recognized as an agent with activity outside the central nervous system. It does not possess antiinflammatory activity like other substances that inhibit prostaglandins but has been shown to be an analgesic with potency comparable to ASA. This is believed to be by inhibition of brain prostaglandin synthetase. We have determined by using the chronically catheterized sheep fetus that acetaminophen has potent activity on the ductus arteriosus and produces a constriction, in therapeutic analgesic quantities, comparable to ASA. Thus, acetaminophen may be a potent inhibitor of prostaglandin function in the fetus.  相似文献   

9.
10.
Acetaminophen (250 mg/kg) administered intraperitoneally to fasted, phenobarbital-induced mice produced hepatotoxicity. No hepatotoxicity was observed after the administration of the regioisomer 3'-hydroxyacetanilide (600 mg/kg). Similar levels of covalent binding to liver homogenates occurred in mice receiving either acetaminophen or 3'-hydroxyacetanilide at these doses. However, subcellular fractionation techniques revealed that the acetaminophen treatment produced greater levels of covalent binding to mitochondrial proteins than 3'-hydroxyacetanilide. In addition, acetaminophen depleted mitochondrial glutathione levels more extensively than 3'-hydroxyacetanilide. Plasma membrane calcium-ATPase activity was reduced to 79.8% and 55.7% of control values at 1 h and 6 h, respectively, following the administration of acetaminophen. No inhibition of this enzyme was detected in mice receiving 3'-hydroxyacetanilide. Acetaminophen also induced alterations in mitochondrial calcium levels and decreased the ability of isolated mitochondria to sequester calcium. These effects were not produced by 3'-hydroxyacetanilide. Our results indicate that acetaminophen induces alterations in calcium homeostasis while 3'-hydroxyacetanilide does not.  相似文献   

11.
Caspase-1, the IL-1beta converting enzyme (ICE), is required for intracellular processing/maturation of IL-1beta and IL-18. NO releasing nonsteroidal antiinflammatory drugs (NSAIDs) are a new class of NSAID derivatives that spare the gastric mucosa. Here, we tested the hypothesis that NCX-4016, a NO-aspirin derivative, inhibits proinflammatory cytokine release from endotoxin (LPS)-challenged monocytes. Our results demonstrated that exposing LPS-stimulated human monocytes to NCX-4016 resulted in a 40-80% inhibition of IL-1beta, IL-8, IL-12, IL-18, IFN-gamma, and TNF-alpha release with an EC(50) of 10-20 microM for IL-1beta and IL-18. Incubating LPS-primed monocytes with NCX-4016 resulted in intracellular NO formation as assessed by measuring nitrite/nitrate, intracellular cGMP concentration, and intracellular NO formation. Exposing LPS-stimulated monocytes to aspirin or celecoxib caused a 90% inhibition of prostaglandin E(2) generation but had no effect on cytokine release. NCX-4016, similar to the NO donor S-nitroso-N-acetyl-D-L-penicillamine, inhibited caspase-1 activity with an EC(50) of approximately 20 microM. The inhibition of caspase-1 by NCX-4016 was reversible by the addition of DTT, which is consistent with S-nitrosylation as the mechanism of caspase-1 inhibition. NCX-4016, but not aspirin, prevented ICE activation as measured by assessing the release of ICE p20 subunit. IL-18 immunoneutralization resulted in a 60-80% reduction of IL-1beta, IL-8, IFN-gamma, and TNF-alpha release from LPS-stimulated monocytes. Taken together, these data indicate that incubating human monocytes with NCX-4016 causes intracellular NO formation and suppresses IL-1beta and IL-18 processing by inhibiting caspase-1 activity. Caspase-1 inhibition is a new, cycloxygenase-independent antiinflammatory mechanism of NO-aspirin.  相似文献   

12.
Acetaminophen killed cultured hepatocytes prepared from male rats induced with 3-methylcholanthrene by two distinct mechanisms. With 0.5 to 5 mM acetaminophen, cell killing within 4 h depended on the inhibition of glutathione reductase by 1,3-bis(chloroethyl)-1-nitrosourea (BCNU) and was accompanied by the peroxidation of cellular lipids as assessed by the accumulation of malondialdehyde. The antioxidant diphenylphenylenediamine (DPPD) prevented both the peroxidation of lipids and the death of the cells. By contrast, DPPD had no effect on the metabolism of acetaminophen as assessed by the extent of the covalent binding of [3H]acetaminophen; by the rate and extent of the depletion of glutathione; and by the accumulation of acetaminophen metabolites in the culture medium. It is concluded that the peroxidation of the phospholipids of cellular membranes is the mechanism whereby 0.5 to 5 mM acetaminophen lethally injures cultured hepatocytes. With 10-20 mM acetaminophen, cell killing at 4 h still depended on BCNU. However, the amount of malondialdehyde in the cultures progressively decreased in parallel with the decreasing ability of DPPD to protect the cells. With 20 mM acetaminophen, there was no evidence of lipid peroxidation, and DPPD had no protective effect. Thus, a second mechanism of lethal cell injury with 10-20 mM acetaminophen is independent of lipid peroxidation and insensitive to antioxidants.  相似文献   

13.
In previous studies we found that overexpression of the inducible form of cyclooxygenase, COX-2, in the brain exacerbated beta-amyloid (A beta) neuropathology in a transgenic mouse model of Alzheimer's disease. To explore the mechanism through which COX may influence A beta amyloidosis, we used an adenoviral gene transfer system to study the effects of human (h)COX-1 and hCOX-2 isoform expression on A beta peptide generation. We found that expression of hCOXs in human amyloid precursor protein (APP)-overexpressing (Chinese hamster ovary (CHO)-APPswe) cells or human neuroglioma (H4-APP751) cells resulting in 10-25 nM prostaglandin (PG)-E2 concentration in the conditioned medium coincided with an approximately 1.8-fold elevation of A beta-(1-40) and A beta-(1-42) peptide generation and an approximately 1.8-fold induction of the C-terminal fragment (CTF)-gamma cleavage product of the APP, an index of gamma-secretase activity. Treatment of APP-overexpressing cells with the non-selective COX inhibitor ibuprofen (1 microM, 48 h) or with the specific gamma-secretase inhibitor L-685,458 significantly attenuated hCOX-1- and hCOX-2-mediated induction of A beta peptide generation and CTF-gamma cleavage product formation. Based on this evidence, we next tested the hypothesis that COX expression might promote A beta peptide generation via a PG-E2-mediated mechanism. We found that exposure of CHO-APPswe or human embryonic kidney (HEK-APPswe) cells to PG-E2 (11-deoxy-PG-E2) at a concentration (10 nM) within the range of PG-E2 found in hCOX-expressing cells similarly promoted (approximately 1.8-fold) the generation of the CTF-gamma cleavage product of APP and commensurate A beta-(1-40) and A beta-(1-42) peptide elevation. The study suggests that expression of COXs may influence A beta peptide generation through mechanisms that involve PG-E2-mediated potentiation of gamma-secretase activity, further supporting a role for COX-2 and COX-1 in Alzheimer's disease neuropathology.  相似文献   

14.
Nabumetone is a novel non-steroidal antiinflammatory drug which although a weak cyclooxygenase inhibitor is converted by the liver to metabolites that are more potent inhibitors of cyclooxygenase. Nabumetone may thus avoid the occurrence of prostanoid-mediated gastropathy while maintaining its efficacy as an antiinflammatory agent. We compared the effect of nabumetone and 6-methoxy-2-naphthylacetic acid (6-MNA; the principal active metabolite of nabumetone) with that of naproxen and indomethacin on the synthesis of rat gastric prostaglandins I2 and E2, in vitro and ex vivo. Ex vivo platelet TXA2 and aortic PGI2 synthesis was also investigated in order to assess peripheral activity of nabumetone metabolites. In vitro, nabumetone was completely without effect on gastric mucosal prostanoid synthesis, whereas indomethacin, naproxen and 6-MNA (in this order of potency) inhibited prostanoid synthesis. Ex vivo, low dose naproxen and indomethacin (less than 5mg.kg-1) markedly inhibited gastric mucosal prostanoid synthesis at 30 min and 2 h post gavage, whereas nabumetone was without significant effect. Nabumetone administration also resulted in the inhibition of platelet TXA2 synthesis, whereas aortic PGI2 synthesis was unaltered. These data indicate that the administration of nabumetone may avoid NSAID gastropathy by leaving gastric mucosal prostanoid synthesis intact and also that the active metabolite(s) of nabumetone are effective inhibitors of cyclooxygenase in an NSAID-target tissue (platelet). The lack of effect of nabumetone administration on vascular PGI2 synthesis may confer an additional advantage over other NSAIDs, since the inhibition of peripheral PGI2 has been implicated in hypertensive and nephrotoxic side effects of NSAIDs.  相似文献   

15.
The isoprostanes are a group of biologically active arachidonic acid metabolites initially thought to be formed under conditions of oxidative stress and independently of cyclooxygenase. However, recent studies have demonstrated isoprostane production under conditions in which cyclooxygenase is intentionally activated/induced. Here we describe for the first time formation of isoprostanes by human vascular cells via independent pathways of oxidative stress and cyclooxygenase induction. We compared the release of the isoprostane with that of the traditional prostaglandin, prostaglandin E2. Cyclooxygenase-2 induction was confirmed by Western blot. When cells were stimulated with cytokines, the release of isoprostanes was inhibited by the cyclooxygenase-1 and -2 inhibitor indomethacin as well by as the cyclooxygenase-2 selective inhibitor L-745,337. However, treatment of cells with the superoxide-producing enzyme xanthine oxidase also resulted in isoprostane release, which was not affected by cyclooxygenase inhibition, unlike PGE2 release under the same condition. Thus, two independent pathways relating to oxidative stress and cyclooxygenase-2 induction form isoprostanes. These findings may have particular importance in diseases such as sepsis and ARDS in which oxidant stress occurs and cyclooxygenase is induced.  相似文献   

16.
High levels of NaCN (20 to 250 mM) were required to inhibit cyclooxygenase catalysis and cause extended lag periods (up to 1.6 min), whereas CO failed to inhibit catalysis. This NaCN inhibition was easily overcome by endogenous or exogenous hydroperoxides. Added hydroperoxides acted to eliminate lag periods without undergoing net conversion to other chemical species. In addition, experiments with glutathione peroxidase inhibition showed that hydroperoxides were essential not only in the early phases, but throughout catalysis. In spectrophotometric experiments, NaCN formed a complex with ferriheme cyclooxygenase (Kd = 1.3 mM) and inhibited hydroperoxide interaction with this form of the enzyme. Phenolic antioxidants, only slightly extended lag periods while inhibiting oxygenation rates more than 50%. Low levels of phenol (which is normally stimulatory) or alpha-naphthol when combined with NaCN or glutathione peroxidase (agents which interfere with peroxide activation) resulted in potent synergistic inhibition with long lag times. A mechanism consistent with all of the above properties of cyclooxygenase has been elucidated, Further mechanistic explanation was sought for reaction-catalyzed self-inactivation of cyclooxygenase. This phenomenon could not be explained simply by heme lability, or cyclooxygenase sensitivity to destruction by ambient hydroperoxides, Rather, it appears to involve a destructive reaction intermediate intrinsic to involve a destructive reaction intermediate intrinsic to the cyclooxygenase mechanism.  相似文献   

17.
Prostaglandin H synthase catalyzes two reactions: the bis-dioxygenation of arachidonic acid to form prostaglandin G2 (cyclooxygenase activity), and the reduction of hydroperoxides to the corresponding alcohols (peroxidase activity). The cyclooxygenase activity can be selectively inhibited by many nonsteroidal antiinflammatory agents including indomethacin. In the native synthase, there is a single prominent protease-sensitive region, located near Arg253; binding of the heme prosthetic group makes the synthase resistant to proteases. To investigate the spatial relationship between the area of the synthase which interacts with indomethacin and the protease-sensitive region, the effects of indomethacin and similar agents on the protease sensitivity of the two enzymatic activities and of the synthase polypeptide were examined. Incubation of the synthase apoenzyme with trypsin (3.6% w/w) resulted in the time-dependent coordinate loss (75% at 1 h) of both enzymatic activities and the cleavage (85% at 1 h) of the 70-kDa subunit into 38- and 33-kDa fragments, indicating that proteolytic cleavage of the polypeptide at Arg253, destroyed both activities of the synthase simultaneously. Indomethacin, (S)-flurbiprofen, or meclofenamate (each at 20 microM) rendered both activities and the synthase polypeptide (at 5 microM subunit) resistant to attack by trypsin or proteinase K; these agents also inhibited the cyclooxygenase activity of the intact synthase. Two reversible cyclooxygenase inhibitors, ibuprofen and flufenamate, also made both of the activities and the synthase polypeptide more resistant to trypsin. Titration of the apoenzyme with indomethacin (0-3 mol/mol of synthase dimer) resulted in proportional increases in the inhibition of the cyclooxygenase and in the resistance to attack by trypsin. (R)-Flurbiprofen did not increase the resistance to protease or appreciably inhibit the cyclooxygenase. These results suggest that the same stereospecific interaction of these agents with the synthase that produced inhibition of the cyclooxygenase led to a decreased accessibility of the Arg253 region to proteases. Aspirin treatment made the synthase less resistant to trypsin; aspirin-treated synthase became more resistant to trypsin when it was incubated with indomethacin before addition of the protease. The presence of 50 microM arachidonate during digestion of apoenzyme or aspirin-treated apoenzyme with trypsin did not decrease the cleavage of the synthase subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Acetaminophen, a widely prescribed analgesic that causes fulminant hepatic necrosis in overdosed humans, produced varying degrees of hepatotoxixity in mice, rats, hamsters, guinea pigs and rabbits. The severity of hepatic injury paralleled the rate of activation of acetaminophen by hepatic microsomal enzymes to a potent arylating agent. The severity of hepatic damage in various species also correlated directly with the rate of hepatic glutathione depletion after acetaminophen. These findings support the hypothesis that the electrophilic arylating agent formed from acetaminophen invibo is preferentially detoxified by conjugation with glutathione and that arylation of hepatic macromolecules occurs only when glutathione availability is exceeded. Since N-hydroxylation of another N-acetylarylamine (2-acetylaminofluorene) occurs to a much greater extent in the species that are susceptible to acetaminophen-induced hepatic necrosis, the data also are consistent with the hypothesis that the toxic metabolite of acetaminophen results from N-hydroxylation.  相似文献   

20.
Acetaminophen is one of the most extensively used analgesics/antipyretics worldwide, and overdose or idiopathic reaction causes major morbidity and mortality in its victims. Research into the mechanisms of toxicity and possible therapeutic intervention is therefore essential. In this study, the response of transgenic mice overexpressing human antioxidant enzymes to acute acetaminophen overdose was investigated. Animals overexpressing superoxide dismutase or plasma glutathione peroxidase demonstrated dramatic resistance to acetaminophen toxicity. Intravenous injection of glutathione peroxidase provided normal mice with nearly complete protection against a lethal dose of acetaminophen. Surprisingly, animals overexpressing intracellular glutathione peroxidase in the liver were significantly more sensitive to acetaminophen toxicity compared with nontransgenic littermates. This sensitivity appears to be due to the inability of these animals to efficiently recover glutathione depleted as a result of acetaminophen metabolism. Finally, the results suggest that glutathione peroxidase overexpression modulates the synthesis of several acetaminophen metabolites. Our results demonstrate the ability of glutathione peroxidase levels to influence the outcome of acetaminophen toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号