首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Immunogold labelling and electron microscopy were used to investigate whether catalase was present in peroxisomal inclusions, the composition of which has not yet been determined in plant cells. In the mesophyll cells of sunflower (Helianthus annuus L.) cotyledons, the catalase gold label was confined to peroxisomes. At day 2 of postgerminative growth in darkness, peroxisomes were free of inclusions, and the matrix was homogeneously labelled with gold particles. Thereafter, amorphous inclusions appeared, but by day 5 of growth, conspicuous crystalline inclusions (cores) were the predominant type. This developmental change, first observed in cotyledons grown in continuous light between day 2.5 and 5, also took place in cotyledons kept in permanent darkness. Both amorphous and crystalline inclusions showed a much higher immunogold label than did the peroxisomal matrix, indicating that catalase was a component of both types of peroxisomal inclusions. In contrast to catalase, the immunogold label of glycolate oxidase was almost completely absent from cores and was confined to the peroxisomal matrix. Together with reports on the absence of other enzymes from peroxisomal inclusions in sunflower and other species (Vaughn, 1989) our results suggest that catalase is a major constituent of amorphous and crystalline peroxisomal inclusions in plants.  相似文献   

2.
Subperoxisomal localization of glycolate oxidase   总被引:1,自引:0,他引:1  
K C Vaughn 《Histochemistry》1989,91(2):99-105
The subperoxisomal distribution of glycolate oxidase (GO) in leaves and cotyledons of several plants was investigated using post-embedding immunogold labelling. In peroxisomes with amorphous nucleoids, all of the immunolabelling is associated with the matrix of the peroxisome, even in tissue embedded in Lowicryl, a resin that preserves antigenicity best. This same staining pattern was found after cytochemical staining for GO activity with cerium. In peroxisomes with crystalline inclusions, the inclusions are only lightly labelled, compared with the densely-labelled matrix. Cytochemical reactions are noted between the units of the crystal in these peroxisome types. Because cytochemical reactions for catalase are concentrated in the amorphous nucleoid and crystalline peroxisomal inclusions, the general lack of immunogold staining of GO and other peroxisomal proteins indicate that catalase may be the major (or in some cases the exclusive) constituent of these peroxisomal inclusions.  相似文献   

3.
Summary The subperoxisomal distribution of glycolate oxidase (GO) in leaves and cotyledons of several plants was investigated using post-embedding immunogold labelling. In peroxisomes with amorphous nucleoids, all of the immunolabelling is associated with the matrix of the peroxisome, even in tissue embedded in Lowicryl, a resin that preserves antigenicity best. This same staining pattern was found after cytochemical staining for GO activity with cerium. In peroxisomes with crystalline inclusions, the inclusions are only lightly labelled, compared with the denselylabelled matrix. Cytochemical reactions are noted between the units of the crystal in these peroxisome types. Because cytochemical reactions for catalase are concentrated in the amorphous nucleoid and crystalline peroxisomal inclusions, the general lack of immunogold staining of GO and other peroxisomal proteins indicate that catalase may be the major (or in some cases the exclusive) constituent of these peroxisomal inclusions.  相似文献   

4.
A. P. Kausch  H. T. Horner 《Planta》1985,164(1):35-43
Three peroxisomal enzymes, glycolate oxidase, urate oxidase and catalase were localized cytochemically in Psychotria punctata (Rubiaceae) leaves and Yucca torreyi (Agavaceae) seedling root tips, both of which contain developing and mature calcium-oxalate raphide crystal idioblasts. Glycolate-oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6) activities were present within leaftype peroxisomes in nonidioblastic mesophyll cells in Psychotria leaves, while urate-oxidase (EC 1.7.3.3) activity could not be conclusively demonstrated in these organelles. Unspecialized peroxisomes in cortical parenchyma of Yucca roots exhibited activities of all three enzymes. Reactionproduct deposits attributable to glycolate-oxidase activity were never observed in peroxisomes of any developing or mature crystal idioblasts of Psychotria or Yucca. Catalase localization indicates that idioblast microbodies are functional peroxisomes. The apparent absence of glycolate oxidase in crystal idioblasts of Psychotria and Yucca casts serious doubt that pathways involving this enzyme are operational in the synthesis of the oxalic acid precipitated as calcium-oxalate crystals in these cells.Abbreviations AMPD 2-amino-2-methyl-1,3-propandiol - CTEM conventional transmission electron microscopy - DAB 3,3-diaminobenzidine tetrahydrochloride - HVEM high-voltage electron microscopy  相似文献   

5.
A Survey of Plants for Leaf Peroxisomes   总被引:28,自引:20,他引:8       下载免费PDF全文
Leaves of 10 plant species, 7 with photorespiration (spinach, sunflower, tobacco, pea, wheat, bean, and Swiss chard) and 3 without photorespiration (corn, sugarcane, and pigweed), were surveyed for peroxisomes. The distribution pattern for glycolate oxidase, glyoxylate reductase, catalase, and part of the malate dehydrogenase indicated that these enzymes exist together in this organelle. The peroxisomes were isolated at the interface between layers of 1.8 to 2.3 m sucrose by isopycnic nonlinear sucrose density gradient centrifugation or in 1.95 m sucrose on a linear gradient. Chloroplasts, located by chlorophyll, and mitochondria by cytochrome c oxidase, were in 1.3 to 1.8 m sucrose.In leaf homogenates from the first 7 species with photorespiration, glycolate oxidase activity ranged from 0.5 to 1.5 mumoles x min(-1) x g(-1) wet weight or a specific activity of 0.02 to 0.05 mumole x min(-1) x mg(-1) protein. Glyoxylate reductase activity was comparable with glycolate oxidase. Catalase activity in the homogenates ranged from 4000 to 12,000 mumoles x min(-1) x g(-1) wet weight or 90 to 300 mumoles x min(-1) x mg(-1) protein. Specific activities of malate dehydrogenase and cytochrome oxidase are also reported. In contrast, homogenates of corn and sugarcane leaves, without photorespiration, had 2 to 5% as much glycolate oxidase, glyoxylate reductase, and catalase activity. These amounts of activity, though lower than in plants with photorespiration, are, nevertheless, substantial.Peroxisomes were detected in leaf homogenates of all plants tested; however, significant yields were obtained only from the first 5 species mentioned above. From spinach and sunflower leaves, a maximum of about 50% of the marker enzyme activities was found to be in these microbodies after homogenization. The specific activity for peroxisomal glycolate oxidase and glyoxylate reductase was about 1 mumole x min(-1) x mg(-1) protein; for catalase. 8000 mumoles x min(-1) x mg(-1) protein, and for malate dehydrogenase, 40 mumoles x min(-1) x mg(-1) protein. Only small to trace amounts of marker enzymes for leaf peroxisomes were recovered on the sucrose gradients from the last 5 species of plants. Bean leaves, with photorespiration, had large amounts of these enzymes (0.57 mumole of glycolate oxidase x min(-1) x g(-1) tissue) in the soluble fraction, but only traces of activity in the peroxisomal fraction. Low peroxisome recovery from certain plants was attributed to particle fragility or loss of protein as well as to small numbers of particles in such plants as corn and sugarcane.Homogenates of pigweed leaves (no photorespiration) contained from one-third to one-half the activity of the glycolate pathway enzymes as found in comparable preparations from spinach leaves which exhibit photorespiration. However, only traces of peroxisomal enzymes were separated by sucrose gradient centrifugation of particles from pigweed. Data from pigweed on the absence of photorespiration yet abundance of enzymes associated with glycolate metabolism is inconsistent with current hypotheses about the mechanism of photorespiration.Most of the catalase and part of the malate dehydrogenase activity was located in the peroxisomes. Contrary to previous reports, the chloroplast fractions from plants with photo-respiration did not contain a concentration of these 2 enzymes, after removal of peroxisomes by isopycnic sucrose gradient centrifugation.  相似文献   

6.
N. Roth-Bejerano 《Planta》1980,149(3):252-256
The attachment of glycolate oxidase to the peroxisomal fraction derived from etiolated barley leaves (Hordeum vulgare L. cr. Dvir) is affected by light. The effect of red irradiation is reversed by subsequent far-red irradiation, indicating the involvement of phytochrome. This phytochrome effect is assumed to be related to phytochrome binding. Indeed, prevention by filipin (1.2·10-6 mol g-1 f wt) or cholesterol of phytochrome binding to membranes abolishes the effect of light on the interaction between glycolate oxidase and the peroxisomal fraction. Glycolate oxidase binding is affected by addition of quasi-ionophores such as gramicidin and filipin at a concentration of 0.6·10-3 mol g-1 f wt. This fact indicates that peroxisome-glycolate oxidase interaction may be affected by membrane potential. Since both ion transport and membrane potential are known to be affected by phytochrome, it is proposed that phytochrome acts in the light-induced modulation of glycolate oxidase attachment as a quasi-ionophore.Abbreviations GO glycolate oxidase - Pr and Pfr phytochrome forms absorbing in red and far-red, respectively - R and F red and far-red irradiation - Cumulative 20 Kp 20,000 g pellet obtained by centrifugation of the crude extract - 1 Kp 1,000 g pellet - 20 Kp 20,000 g pellet, obtained by centrifugation of 1 Kp supernatant - 1 Kp, 20 Kp and cumulative 20 Kp pellets obtained after density centrifugation through a sucrose cushion  相似文献   

7.
The substructural organization of completely crystalline peroxisomes present in Hansenula polymorpha cells grown under methanol limitation in a chemostat was investigated by different cytochemical and ultrastructural techniques. Time-dependent cytochemical staining experiments indicated that activities of the two main constituents of these organelles, namely, alcohol oxidase and catalase, were present throughout the crystalline matrix. Catalase was completely removed from isolated peroxisomes by osmotic shock treatment. After such treatment, the ultrastructure of the crystalline matrix of the organelles remained virtually intact. Because alcohol oxidase activity was still present in this matrix, it was concluded that alcohol oxidase protein is the only structural element of the peroxisomal crystalloids. The molecular architecture of the crystalloids was investigated in ultrathin cryosections which permitted recognition of individual molecules in the crystalline matrix. Depending on the plane of sectioning, different crystalline patterns were observed. Tilting experiments indicated that these images were caused by superposition of octameric alcohol oxidase molecules arranged in a tetragonal lattice. A three-dimensional model of the crystalloid is presented. The repeating unit of this structure is composed of four alcohol oxidase molecules. The crystalloid represents an open structure, which may explain the observed free mobility of catalase molecules.  相似文献   

8.
Microbodies containing bipyramidal crystalline nucleoid inclusions occur within every cortical cell in roots of Yucca torreyi. Reaction product deposition attributable to catalase, glycolate oxidase, and urate oxidase activities are cytochemically localized to Yucca root microbodies and classifies them as unspecialized peroxisomes on the basis of their enzyme complement and tissue origin. Crystalline nucleoids do not stain for glycolate or urate oxidase activities, appearing as negatively-stained inclusions, but are apparently reactive for catalase activity. Development of unspecialized peroxisomes in Yucca roots is consistent with all evidence for glyoxysome and leaf-type peroxisome biogenesis from ER. Dilated ends of ER cisternae accumulate cytochemically detectable glycolate oxidase activity. After considerable dilation, paracrystalline precursors to nucleoids form within the bulge, and the inclusion enlarges to comprise the majority of peroxisomal volume. Peroxisomes that are not attached to ER are observed with high voltage electron microscopy and in serial thin sections, implying that eventually the budding peroxisomes are vesiculated. The functions of these unspecialized peroxisomes are suggested based upon cytochemical detection of their partial enzyme complement and their spatial and developmental timing relationships within developing Yucca root cortical parenchyma cells.  相似文献   

9.
Cells of Hansenula polymorpha growing exponentially on glucose generally contained a single peroxisome of small dimension, irregular in shape and located in close proximity to the cell wall. Crystalline inclusions in the peroxisomal matrix were not observed. Associations of the organelles with one or more strands of endoplasmic reticulum were evident. In stationary phase cells the size of the peroxisomes had increased considerably. They were more cubical in form and showed a partly or completely crystalline matrix.After the transfer of cells growing exponentially on glucose into media containing methanol, large peroxisomes with a partly crystalline matrix developed in the cells within 6 h. These organelles originated from the small peroxisomes in the glucose-grown cells. De novo synthesis of peroxisomes was not observed. Prolonged cultivation in the presence of methanol resulted in a gradual increase in the number of peroxisomes by means of separation of small peroxisomes from mature organelles. During growth of peroxisomes associations with the endoplasmic reticulum remained evident.The increase in volume density of peroxisomes in stationary phase cells grown on glucose and in methanol-grown cells was accompanied by the synthesis of the peroxisomal enzymes alcohol oxidase and catalase. Cytochemical staining techniques revealed that alcohol oxidase activity was only detected when the peroxisomes contained a crystalloid inclusion. Since in peroxisomes of an alcohol oxidase-negative mutant of Hansenula polymorpha crystalline inclusions were never detected, it is concluded that the development of crystalloids inside peroxisomes is due to the accumulation of alcohol oxidase in these organelles.  相似文献   

10.
U. Winkler  H. Stabenau 《Planta》1995,195(3):403-407
Peroxisomes were isolated by gradient centrifugation from two different diatoms: Nitzschia laevis (subgroup of Pennales) and Thalassiosira fluviatilis (subgroup of Centrales). In neither of these organelles could catalase or any H2O2-forming oxidase be demonstrated. The glycolate-oxidizing enzyme present in the peroxisomes is a dehydrogenase capable of oxidizing l-lactate as well. The peroxisomes also contain the glyoxysomal markers isocitrate lyase and malate synthase. However, enzymes of the fatty-acid -oxidation pathway are located exclusively in the mitochondria. The mitochondria additionally possess glutamate-glyoxylate aminotransferase and a glycolate dehydrogenase which differs from the peroxisomal glycolate dehydrogenase since it preferably utilizes d-lactate as an alternative substrate. Hydroxypyruvate reductase and glyoxylate carboligase were not found in the cells of either diatom. By culturing Nitzschia laevis it could be demonstrated that decreasing the CO2 concentration in the aeration mixture from 2% to 0.03% and increasing the irradiance from 40 to 250 mol quanta · m–2 · s–1 resulted in an increase of all peroxisomal enzyme activities. In addition, enzyme activities of the -oxidation pathway were increased. However, mitochondrial glycolate dehydrogenase and aminotransferase did not alter their activities under these conditions. Summarizing all results, it is postulated that there are two different pathways for the metabolism of glycolate in the diatoms.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

11.
The localization of methanol oxidase activity in cells of methanol-limited chemostat cultures of the yeast Hansenula polymorpha has been studied with different cytochemical staining techniques. The methods were based on enzymatic or chemical trapping of the hydrogen peroxide produced by the enzyme during aerobic incubations of whole cells in methanol-containing media. The results showed that methanol-dependent hydrogen peroxide production in either fixed or unfixed cells exclusively occurred in peroxisomes, which characteristically develop during growth of this yeast on methanol. Apart from methanol oxidase and catalase, the typical peroxisomal enzymes d-aminoacid oxidase and l--hydroxyacid oxidase were also found to be located in the peroxisomes. Urate oxidase was not detected in these organelles. Phase-contrast microscopy of living cells revealed the occurrence of peroxisomes which were cubic of form. This unusual shape was also observed in thin sections examined by electron microscopy. The contents of the peroxisomes showed, after various fixation procedures, a completely crystalline or striated substructure. It is suggested that this substructure might represent the in vivo organization structure of the peroxisomal enzymes.  相似文献   

12.
Bernt Gerhardt 《Planta》1973,110(1):15-28
Summary The enzyme patterns in sunflower cotyledons indicate that the glyoxysomal function of microbodies is replaced by the peroxisomal function of these organelles during the transition from fat degradation to photosynthesis. The separation of the microbody population into glyoxysomes and peroxisomes during this transition period is reported. The mean difference in density between the activity peaks of glyoxysomal and peroxisomal marker enzymes on a sucrose gradient was calculated to be 0.007±0.004 g/cm3 and turned out to be significant (t=7.8>4.04=t 5;0.01). The activity peak of catalase coincides with that of isocitrate lyase in early stages of development, but shifts to the activity peak of peroxisomal marker enzymes during the transition period. No isozymes of the catalase could be detected by gel electrophoresis in the microbodies with the two different functions.During the rise of the peroxisomal marker enzymes no synthesis of the common microbody marker, catalase, could be demonstrated using the inhibitor allylisopropylacetamide. Using D2) for density labeling of newly-formed catalase, no difference is observed between the density of catalase from cotyledons grown on 99.8% D2O during the transition period and the density of enzyme from cotyledons grown on H2O. The activity of particulate glycolate oxidase is reduced 30–50% by allylisopropylacetamide, but is not affected by D2O. The chlorophyll formation in the cotyledons is strongly inhibited by both substances.  相似文献   

13.
The cytochemical localizations of malate synthase (glyoxysomal marker) and glycolate oxidase (peroxisomal marker) have been examined in cotyledon segments and sucrose-gradient fractions from germinated cucumber (Cucumis sativus L.) seedlings. The seedlings were grown in the dark for 4 days, transferred to 4 hours of continuous light, then returned to the dark for 24 hours. Under these conditions, high specific activities for both glyoxysomal and peroxisomal enzymes are maintained in cotyledon homogenates and microbody-enriched fractions. Electron cytochemistry of the marker enzymes reveals that all or virtually all the microbodies observed in cotyledonary cells and sucrose-gradient fractions contain both enzymes. The staining in gradient fractions was determined from scoring a minimum of 600 photographed microbodies for each enzyme. After correcting for the number of particles stained for catalase reactivity (representing true microbodies), 94 and 97% of the microbodies were found stained for malate synthase and glycolate oxidase activity, respectively.  相似文献   

14.
Y. -N. Hong  P. Schopfer 《Planta》1981,152(4):325-335
The peroxisomal enzyme, urate oxidase (EC 1.7.3.3), and the next enzyme of the urate pathway, allantoinase (EC 3.5.2.5), demonstrate a lightmediated rise of activity in the cotyledons of mustard (Sinapis alba L.). The capacity of the peroxisomes for urate breakdown, marked by the time course of urate oxidase, develops distinctly later than the two other peroxisome functions (fatty acid breakdown, glyoxysomal function; glycolate breakdown, leaf peroxisomal function). The light effect on urate oxidase and allantoinase is mediated through the phytochrome system in all three seedling organs (cotyledons, hypocotyl, radicle), as revealed by induction/reversion experiments with red/far-red light pulses and continuous irradiation with far-red light (high irradiance reaction of phytochrome). Both enzyme activities can be induced by phytochrome in the seedling cotyledons only during a sensitive period of about 48 h prior to the actual light-mediated rise of activity, making it necessary to assume the existence of a long-lived intermediate (transmitter) in the signal response chain connecting enzyme formation to the phytochrome system. Detailed kinetic investigation, designed to test whether urate oxidase and allantoinase are controlled by phytochrome via the same signal response chain (coordinate induction), revealed large differences between the two enzymes: (i) a different onset of the loss of reversibility of a red light induction by a far-red light pulse (=onset of transmitter formation=coupling point; 48 h/24 h after sowing for urate oxidase/allantoinase); (ii) a different onset of the response (=onset of competence for transmitter= starting point; 72 h/48 h); (iii) full loss of reversibility (=completion of transmitter formation) is reached at different times (independence point, 90 h/52 h). These differences show that phytochrome controls urate oxidase and allantoinase via separate signal response chains. While urate oxidase can be localized in the peroxisomal fraction isolated from crude organelle extracts of the cotyledons by density gradient centrifugation, most of the allantoinase activity found in the peroxisomal fraction did not appear to be an integral part of the peroxisome but originated presumably from adhering membrane fragments.Abbreviations AL allantoinase, EC 3.5.2.5 - CAT catalase, EC 1.11.1.6 - GO glycolate oxidase, EC 1.1.3.1 - ICL isocitrate lyase, EC 4.1.3.1 - UO urate oxidase, EC 1.7.3.3. Pr - Pfr red and far-red absorbing forms of phytochrome On the occasion of his 80th birthday we dedicate this paper to Prof. Dr. phil., Dr. mult. h.c. Kurt Mothes, pioneer in research on metabolism of urates  相似文献   

15.
Transgenic Pssu-ipt tobacco with elevated content of endogenous cytokinins grown under in vitro conditions exhibited elevated activities of antioxidant enzymes (i.e. catalase, ascorbate peroxidase, guaiacol and syringaldazine peroxidase, glutathione reductase) and some of enzymes involved in anaplerotic pathways such as glucose-6-phosphate dehydrogenase, glycolate oxidase, NADP-malic enzyme, NADP-isocitrate dehydrogenase, and glutamate dehydrogenase compared to control non-transgenic SR1 tobacco. Higher activities of peroxidases, NADP-malic enzyme, and glutamate dehydrogenase were maintained in transgenic grafts after several weeks of the growth under ex vitro conditions, while transgenic rooted plants showed only the increase in activity of glycolate oxidase compared to control non-transformed tobacco. Total activities of superoxide dismutase were lower in both types of Pssu-ipt tobacco contrary to controls under both growth conditions. The presence of PR-1 protein and proteins with elevated activities of chitinase was proved in the extracellular fluid in both transgenic types under both in vitro and ex vitro conditions.  相似文献   

16.
Biochemical, electrophoretic and immunological studies were made among peroxisomal enzymes in three organs of soybean [Glycine max (L.) Merr. cv. Centennial] to compare the enzyme distribution and characteristics of specialized peroxisomes in one species. Leaves, nodules and etiolated cotyledons were compared with regard to several enzymes localized solely in their peroxisomes: catalase (EC 1.11.1.6), malate synthase (EC 4.1.3.2), glycolate oxidase (EC 1.1.3.1), and urate oxidase (EC 1.7.3.3). Catalase activity was found in all tissue extracts. Electrophoresis on native polyacrylamide gels indicated that leaf catalase migrated more anodally than nodule or cotyledon catalase as shown by both activity staining and Western blotting. Malate synthase activity and immunologically detectable protein were present only in the cotyledon extracts. Western blots of denaturing (lithium dodecyl sulfate) gels probed with anti-cotton malate synthase antiserum, reveal a single subunit of 63 kDa in both cotton and soybean cotyledons. Glycolic acid oxidase activity was present in all three organs, but ca 20-fold lower (per mg protein) in both nodule and cotyledon extracts compared to leaf extracts. Electrophoresis followed by activity staining on native gels indicated one enzyme form with the same mobility in nodule, cotyledon and leaf preparations. Urate oxidase activity was found in nodule extracts only. Native gel electrophoresis showed a single band of activity. Novel electrophoretic systems had to be developed to resolve the urate oxidase and glycolate oxidase activities; both of these enzymes moved cathodally in the gel system employed while most other proteins moved anodally. This multifaceted study of enzymes located within three specialized types of peroxisomes in a single species has not been undertaken previously, and the results indicate that previous comparisons between the enzyme content of specialized peroxisomes from different organisms are mostly consistent with that for a single species, soybean.  相似文献   

17.
Maximum activity of glycolate oxidase was obtained from a recombinant Pichia pastoris by permeabilization with 0.1% benzalkonium chloride for 60 min at room temperature. After treatment, intracellular glycolate oxidase activity increased 10-fold with respect to untreated cells.  相似文献   

18.
 The immunogold labeling technique has been extremely useful in investigation of the structure and function of peroxisomes. In this report a few examples of the application of this technique with significant implications in the field are briefly reviewed. The problem of extraperoxisomal catalase, the subject of long controversy between the biochemists and cytochemists, was settled with the immunogold technique, which unequivocally revealed the presence of that enzyme not only in the cytoplasm, but also in the euchromatin region of nucleus, in addition to peroxisomes. On the other hand, lactate dehydrogenase, a typical cytoplasmic protein, has also been shown recently to be present in peroxisomes and to be involved in the reoxidation of NADH produced by the peroxisomal β-oxidation system. The immunogold technique has revealed several distinct compartments in the matrix of mammalian peroxisomes: urate oxidase in the crystalline cores, α-hydroxy acid oxidase B in the marginal plates and d-amino acid oxidase in a non-crystaline condensed region of matrix. The specific alterations of peroxisomal proteins are reflected in their immunolabeling density with gold particles. Quantitation of gold-label by automatic image analysis has revealed that the induction of lipid β-oxidation enzyme proteins by diverse hypolipidemic drugs is initiated and more pronounced in the pericentral region of the liver lobule. Finally, immunogold labeling with an antibody to 70 kDa peroxisomal membrane protein has identified a novel class of small peroxisomes that initially incorporate radioactive amino acids more efficiently than regular peroxisomes and thus may represent early stages in the biogenesis of peroxisomes. Accepted: May 5, 1996  相似文献   

19.
The ultrastructural cytochemical localization of xanthine oxidase activity in rat liver was investigated by the cerium technique. The reaction product was found in the cytoplasm of endothelial cells in liver sinusoids and, in addition, in crystalline cores of peroxisomes of liver parenchymal cells. Xanthine oxidase was also present in peroxisomal cores of beef liver and kidney, but not in rat kidney peroxisomes, which lack crystalline cores. The localization in peroxisomal cores of rat liver was confirmed also biochemically using highly purified peroxisomal fractions and subfractions containing exclusively the crystalline cores. Moreover, high levels of molybdenum were found in isolated peroxisomal cores by atomic absorption spectroscopy, thus corroborating the association of the molybdenum-containing enzyme with the cores. Since urate oxidase is also present within the same compartment of peroxisomes, it is possible that the crystalline cores harbor a complex of several enzymes involved in the purine metabolism.  相似文献   

20.
After administration of a hypolipidemic drug, MLM-160, to male rats, liver peroxisomes were studied by biochemical, cytochemical, and immunocytochemical methods. The activities of D-amino acid oxidase, glycolate oxidase, and urate oxidase increased 2 to 3-fold by the treatment. The increase of the oxidases was confirmed by immunoblotting analysis. By light microscopy, immunoreaction for catalase was present in the cytoplasmic granules of hepatocytes. The stained granules formed some clusters and overlapped each other after MLM-160 treatment. However, immunostaining for D-amino acid oxidase and urate oxidase was present in discrete fine granules which did not overlap each other. By electron microscopy, many peroxisomes showed ring-like extensions and cavitation of the matrix, often giving the appearance of a peroxisome-within-a-peroxisome. In many cases, these unusual peroxisomes seemed to be interconnected with each other. Within the peroxisomes, the catalase was localized in the matrix. Urate oxidase was associated with the crystalloid cores. D-amino acid oxidase was localized focally in a small part of the matrix where the catalase was mostly negative. In conclusion, the administration of MLM-160 to male rats induces some peroxisomal oxidases, accompanying the appearance of unusual peroxisomes. The precise localization of peroxisomal enzymes suggested that there are subcompartments within the liver peroxisomes as shown in rat kidney peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号