首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Sporamin, a vacuolar protein of the sweet potato, is synthesized as a precursor that contains signal peptide and an N-terminal propeptide that functions as a vacuolar targeting determinant. Sporamin, when expressed in tobacco cells, migrated as smeared bands on an SDS-polyacrylamide gel. The smearing was due to O-glycosylation of the precursor to sporamin. The smeared bands were stained by a glycan-specific stain but no N-glycosylation site was found in the amino acid sequence of the precursor to sporamin. The glycan attached to sporamin contained galactose and arabinose as major sugar components. Mutations that altered the Pro36 or Ser39 residue of the precursor to sporamin prevented glycosylation of the protein, and analysis by semiquantitative Edman degradation suggested that a glycan moiety was attached to Pro36 and, possibly, to Ser39. Pulse-labeling and cell-fractionation experiments revealed that the O-glycosylation of the precursor to sporamin occurred in the Golgi apparatus. Thus, this modification serves as a good marker of the transport from the endoplasmic reticulum (ER) to the Golgi apparatus of the precursor to sporamin. Treatment of transformed tobacco cells with brefeldin A (BFA) caused the intracellular accumulation of prosporamin that did not migrate as smeared bands. Thus, it appeared that BFA inhibited the transport of the precursor to sporamin to the Golgi apparatus. This result provides the first biochemical evidence that BFA inhibits transport from the ER to the Golgi apparatus in plant cells.  相似文献   

2.
Hydroxyproline (Hyp)-rich glycoproteins (HRGPs) participate in all aspects of plant growth and development. HRGPs are generally highly O-glycosylated through the Hyp residues, which means carbohydrates help define the interactive molecular surface and, hence, HRGP function. The Hyp contiguity hypothesis predicts that contiguous Hyp residues are sites of HRGP arabinosylation, whereas clustered noncontiguous Hyp residues are sites of galactosylation, giving rise to the arabinogalactan heteropolysaccharides that characterize the arabinogalactan-proteins. Early tests of the hypothesis using synthetic genes encoding only clustered noncontiguous Hyp in the sequence (serine [Ser]-Hyp-Ser-Hyp)(n) or contiguous Hyp in the series (Ser-Hyp-Hyp)(n) and (Ser-Hyp-Hyp-Hyp-Hyp)(n) confirmed that arabinogalactan polysaccharide was added only to noncontiguous Hyp, whereas arabinosylation occurred on contiguous Hyp. Here, we extended our tests of the codes that direct arabinogalactan polysaccharide addition to Hyp by building genes encoding the repetitive sequences (alanine [Ala]-proline [Pro]-Ala-Pro)(n), (threonine [Thr]-Pro-Thr-Pro)(n), and (valine [Val]-Pro-Val-Pro)(n), and expressing them in tobacco (Nicotiana tabacum) Bright-Yellow 2 cells as fusion proteins with green fluorescent protein. All of the Pro residues in the (Ala-Pro-Ala-Pro)(n) fusion protein were hydroxylated and consistent with the hypothesis that every Hyp residue was glycosylated with arabinogalactan polysaccharide. In contrast, 20% to 30% of Pro residues remained non-hydroxylated in the (Thr-Pro-Thr-Pro)(n), and (Val-Pro-Val-Pro)(n) fusion proteins. Furthermore, although 50% to 60% of the Hyp residues were glycosylated with arabinogalactan polysaccharide, some remained non-glycosylated or were arabinosylated. These results suggest that the amino acid side chains of flanking residues influence the extent of Pro hydroxylation and Hyp glycosylation and may explain why isolated noncontiguous Hyp in extensins do not acquire an arabinogalactan polysaccharide but are arabinosylated or remain non-glycosylated.  相似文献   

3.
Sporamin, the tuberous root storage protein of the sweet potato, which is localized in vacuoles, is synthesized as a prepro-precursor with an N-terminal sequence of amino acids that includes a signal peptide and an additional pro-segment of 16 amino acids. A full-length cDNA for sporamin was placed downstream of the 35 S promoter of cauliflower mosaic virus and introduced into tobacco and sunflower genomes by Ti plasmid-mediated transformation. A polypeptide of nearly the same size as mature sporamin from the sweet potato was detected in transformed calli of tobacco and sunflower, as well as in the leaves, stems, and roots of regenerated, transgenic tobacco plants. Amino acid sequence analysis of the nearly mature-sized form of sporamin from the transformed tobacco cells revealed that it is actually longer by three amino acids at its N terminus than authentic sporamin purified from the sweet potato. By pulse labeling of suspension-cultured tobacco cells with [35S]methionine, the pro-form of the precursor to sporamin, but not the prepro-precursor, was detected. The 35S-labeled proform was chased to the nearly mature-sized form via an intermediate form which is slightly larger than the nearly mature-sized form. Analysis by Edman degradation of the intermediate form that was labeled in vivo with [3H]histidine suggested that it is longer by two amino acids at its N terminus than the nearly mature-sized form of sporamin. These results suggest that at least two steps of posttranslational processing of the pro-form occurs sequentially in tobacco cells. The posttranslational processing of the pro-form of the precursor to sporamin was inhibited by monensin, suggesting that this step takes place in the acidic compartment, probably in the vacuole. All of the sporamin polypeptides synthesized in transformed tobacco cells were retained inside the cell and sporamin was localized in the vacuole, as judged from results of subcellular fractionation. These results indicate that sporamin is appropriately targeted to the vacuole in tobacco cells.  相似文献   

4.
Membranes from tobacco cell suspension cultures were used as antigens for the preparation of monoclonal antibodies. Use of solid phase and indirect immunofluorescence assays led to the identification of hybridomas producing antibodies directed against cell surface epitopes. One of these monoclonal antibodies (11.D2) was found to recognize a molecular species which on two-dimensional analysis (using nonequilibrium pH-gradient electrophoresis and SDS-PAGE) was found to have a high and polydisperse molecular mass and a very basic isoelectric point. This component was conspicuously labeled by [3H]proline in vivo. The monoclonal antibody cross-reacted with authentic tomato extensin, but not with potato lectin nor larch arabinogalactan. Use of the monoclonal antibody as an immunoaffinity reagent allowed the purification of a tobacco glycoprotein which was identical in amino acid composition to extensin. Finally, immunocytological analyses revealed tissue-specific patterns of labeling by the monoclonal antibody that were identical to those observed with a polyclonal antibody raised against purified extensin. We have concluded that monoclonal antibody 11.D2 recognizes an epitope that is carried exclusively by extensin. Analysis of cellular homogenates through differential and isopycnic gradient centrifugation revealed that biosynthesis of the extensin epitope was found on or within the membranes of the endoplasmic reticulum, Golgi region and plasma membrane. This result is consistent with the progressive glycosylation of the newly-synthesized extensin polypeptide during its passage through a typical eukaryotic endomembrane pathway of secretion. The 11.D2 epitope was not found in protoplasts freshly isolated from leaf tissues. However, on incubation of these protoplasts in appropriate culture media, biosynthesis of the epitope was initiated. This process was not impeded by the presence of chemicals that are reported to be inhibitors of cell wall production or of proline hydroxylation.  相似文献   

5.
Most aspects of plant growth involve cell surface hydroxyproline (Hyp)-rich glycoproteins (HRGPs) whose properties depend on arabinogalactan polysaccharides and arabinosides that define the molecular surface. Potential glycosylation sites are defined by an O-Hyp glycosylation code: contiguous Hyp directs arabinosylation. Clustered non-contiguous Hyp directs arabinogalactosylation. Elucidation of this code involved a single species, tobacco (Nicotiana tabacum) BY-2 cells. However, recent work suggests species variation, perhaps tissue specific Hyp glycosylation. Thus, the extent to which the Hyp glycosylation code is 'global' needs testing. We compared the ability of distantly related Arabidopsis cell cultures to process putative HRGP glycosylation motifs encoded by synthetic genes. The genes included: repetitive Ser-Pro, Ser-Pro2, Ser-Pro4 and an analog of the tomato arabinogalactan-protein, LeAGP-1DeltaGPI. All were expressed as enhanced green fluorescent protein (EGFP) fusion glycoproteins, designated: AtSO-EGFP (O=Hyp), AtSO2-EGFP, AtSO4-EGFP and AtEGFP-LeAGP-1DeltaGPI, respectively. The Arabidopsis glycosylation patterns were essentially similar to those observed in Nicotiana: non-contiguous Hyp residues in AtSO-EGFP were glycosylated exclusively with arabinogalactan polysaccharides while contiguous Hyp in AtSO2-EGFP and AtSO4-EGFP was exclusively arabinosylated. Mixed contiguous and non-contiguous Hyp residues in AtEGFP-LeAGP-1DeltaGPI were also arabinosylated and arabinogalactosylated consistent with the code. However, slightly more arabinogalactosylated Hyp and less non-glycosylated Hyp in AtEGFP-LeAGP-1DeltaGPI than tobacco NtEGFP-LeAGP-1DeltaGPI suggested Arabidopsis prolyl hydroxylases have a slightly broader specificity. Arabidopsis Hyp-arabinogalactans differed from tobacco in decreased glucuronic acid content and lack of rhamnose. Yields of the EGFP fusion glycoproteins were dramatically higher than targeted EGFP lacking Hyp-glycomodules. This validates earlier suggestions that the glycosylation of proteins facilitates their secretion.  相似文献   

6.
T Kimura  D J Prockop 《Biochemistry》1982,21(22):5482-5488
[14C]Proline-labeled protocollagen, the unhydroxylated form of procollagen, was isolated from cartilage cells incubated with alpha, alpha'-dipyridyl. For examination of the initial steps in the hydroxylation of the protein, it was incubated in vitro with prolyl hydroxylase so that an average of 1.3-2.7 prolyl residues per chain was hydroxylated. The partially hydroxylated alpha chain were cleaved with cyanogen bromide, and the fragments were separated by polyacrylamide gel electrophoresis or column chromatography. The cyanogen bromide fragments were hydroxylated to the same degree. The results indicated, therefore, that in the initial hydroxylation of alpha chains in vitro, there was no preferential hydroxylation of any specific regions of the protein. In a second series of experiments, cartilage cells were incubated with [14C]proline and alpha, alpha'-dipyridyl so that prolyl hydroxylase in the cells was extensively, but not completely, inhibited. Partially hydroxylated alpha chains were isolated, and cyanogen bromide fragments of the alpha chains from the cells were assayed for hydroxy[14C]proline. The alpha chains contained an average of two residues of hydroxyproline per chain, and the cyanogen bromide fragments were hydroxylated to about the same degree. The results indicated, therefore, that when prolyl hydroxylase activity in cells is low relative to the rate at which pro alpha chains are synthesized, hydroxylation of prolyl residues occurs as it does in vitro, and there is no preferential hydroxylation of a specific region of the protein.  相似文献   

7.
The N-terminal propeptide of the sporamin precursor contains vacuolar targeting information within the Asn-26/Pro-27/Ile-28/Arg-29/Leu-30 (NPIRL) sequence. An Agrobacterium-mediated transient expression assay with tobacco BY-2 cells was employed to investigate the role of each amino acid of the NPIRL region in vacuolar targeting. Replacement of Asn-26, Pro-27, Ile-28 and Leu-30 with several amino acids caused secretion of the mutant prosporamin. Leu was the only amino acid that could be substituted for Ile-28 without affecting transport. Exchange of Leu-30 for amino acids with small side-chains abolished vacuolar delivery. These results indicate that the consensus composition of the NPIRL sequence is [preferably Asn]-[not acidic]-[Ile or Leu]-[any amino acid]-[large and hydrophobic] and suggest that the large alkyl side-chains of Ile-28 and Leu-30 constitute the core of the vacuolar sorting determinant.  相似文献   

8.
9.
1. After the administration of l-[G-(3)H]proline to guinea pigs deprived of ascorbic acid for increasing periods of time, the specific radioactivities of proline and hydroxyproline in skin collagen and aortic elastin were determined at various time-intervals after administration of the labelled compound with a view to studying the formation and degradation of collagen and elastin both deficient in hydroxyproline. 2. As judged from the incorporation of radioactivity into elastin proline, elastin synthesis was not decreased in the ascorbic acid-deficient animals. There was however, a rapid decline in the specific radioactivity of elastin hydroxyproline. The proline/hydroxyproline specific-radioactivity ratio was approx. 1.5:1 after 6 days and 20:1 after 12 days of ascorbic acid deprivation, in contrast with the ratio of 1:1 in controls. The results suggested that the effect of ascorbic acid deficiency on elastin biosynthesis could be regarded as simply an elimination of hydroxylation of elastin proline with the formation and retention of a polymer increasingly deficient in hydroxyproline. 3. Collagen proline and hydroxyproline specific radioactivities were derived from material that was soluble in hot trichloroacetic acid, non-diffusible and collagenase-degradable. In contrast with elastin, there was a rapid decline in the specific radioactivity of proline as well as hydroxyproline in collagen from the ascorbic acid-deficient animals. However, the proline/hydroxyproline specific-radioactivity ratio in all samples from scorbutic animals was consistently slightly above 1:1. The results suggest the appearance in place of collagen, but in rapidly diminishing amounts, of a partially hydroxylated collagen in which the degree of hydroxylation may be decreased only by approx. 10%. 4. Incorporation of radioactivity into the diffusible hydroxyproline in skin remained relatively high despite the rapid decline in the incorporation of radioactivity into collagen. This observation is interpreted as indicative of an increasing degree of degradation of partially hydroxylated collagen to diffusible peptides. An alternative explanation might be that partially hydroxylated peptides are released to an increasing extent from ribosomes before they attain a length at least sufficient to render them non-diffusible. In either case it implies the accumulation in scurvy of low-molecular-weight peptides enriched in proline and deficient in hydroxyproline and could explain the failure to accumulate a high-molecular-weight collagen deficient in hydroxyproline. 5. It is thought, however, that, in addition, an inhibition of ribosomal amino acid incorporation leading to decreased synthesis of partially hydroxylated collagen may also occur, perhaps secondarily to impaired hydroxylation.  相似文献   

10.
Oligosaccharyltransferases (OTases) are responsible for the transfer of carbohydrates from lipid carriers to acceptor proteins and are present in all domains of life. In bacteria, the most studied member of this family is PglB from Campylobacter jejuni (PglB(Cj)). This enzyme is functional in Escherichia coli and, contrary to its eukaryotic counterparts, has the ability to transfer a variety of oligo- and polysaccharides to protein carriers in vivo. Phylogenetic analysis revealed that in the delta proteobacteria Desulfovibrio sp., the PglB homolog is more closely related to eukaryotic and archaeal OTases than to its Campylobacter counterparts. Genetic analysis revealed the presence of a putative operon that might encode all enzymes required for N-glycosylation in Desulfovibrio desulfuricans. D. desulfuricans PglB (PglB(Dd)) was cloned and successfully expressed in E. coli, and its activity was confirmed by transferring the C. jejuni heptasaccharide onto the model protein acceptor AcrA. In contrast to PglB(Cj), which adds two glycan chains to AcrA, a single oligosaccharide was attached to the protein by PglB(Dd). Site-directed mutagenesis of the five putative N-X-S/T glycosylation sites in AcrA and mass spectrometry analysis showed that PglB(Dd) does not recognize the "conventional bacterial glycosylation sequon" consisting of the sequence D/E-X(1)-N-X(2)-S/T (where X(1) and X(2) are any amino acid except proline), and instead used a different site for the attachment of the oligosaccharide than PglB(Cj.). Furthermore, PglB(Dd) exhibited relaxed glycan specificity, being able to transfer mono- and polysaccharides to AcrA. Our analysis constitutes the first characterization of an OTase from delta-proteobacteria involved in N-linked protein glycosylation.  相似文献   

11.
12.
The rate of collagen synthesis relative to the rate of synthesis of noncollagen protein was determined in several lines of cultured fibroblasts using an assay which measures [14C]proline incorporation into the polypeptide chains of collagen. In this assay procedure, collagen is degraded by protease-free collagenase regardless of whether proline and lysine residues are hydroxylated, thus separating the process of polypeptide synthesis from hydroxylation. It was found that the relative rate of collagen synthesis in L-929 cells was approximately 0.8–1% at all stages of growth. There was no significant increase in the relative rate of collagen synthesis in stationary phase compared to log phase cells in the lines Balb 3T3, 3T6, 3T12, and Swiss mouse 3T6. In all cases, the absolute incorporation of [14C]proline into both collagen and noncollagen proteins expressed as radioactivity incorporated per milligram of cellular protein, was 2–10 times higher in log phase cells, depending on the line examined.  相似文献   

13.
The human insulin receptor (IR) homodimer is heavily glycosylated and contains a total of 19 predicted N-linked glycosylation sites in each monomer. The recent crystal structure of the IR ectodomain shows electron density consistent with N-linked glycosylation at the majority of sites present in the construct. Here, we describe a refined structure of the IR ectodomain that incorporates all of the N-linked glycans and reveals the extent to which the attached glycans mask the surface of the IR dimer from interaction with antibodies or other potential therapeutic binding proteins. The usefulness of Fab complexation in the crystallization of heavily glycosylated proteins is also discussed. The compositions of the glycans on IR expressed in CHO-K1 cells and the glycosylation deficient Lec8 cell line were determined by protease digestion, glycopeptide purification, amino acid sequence analysis, and mass spectrometry. Collectively the data reveal: multiple species of complex glycan at residues 25, 255, 295, 418, 606, 624, 742, 755, and 893 (IR-B numbering); multiple species of high-mannose glycan at residues 111 and 514; a single species of complex glycan at residue 671; and a single species of high-mannose glycan at residue 215. Residue 16 exhibited a mixture of complex, hybrid, and high-mannose glycan species. Of the remaining five predicted N-linked sites, those at residues 397 and 906 were confirmed by amino acid sequencing to be glycosylated, while that at residue 78 and the atypical (NKC) site at residue 282 were not glycosylated. The peptide containing the final site at residue 337 was not recovered but is seen to be glycosylated in the electron density maps of the IR ectodomain. The model of the fully glycosylated IR reveals that the sites carrying high-mannose glycans lie at positions of relatively low steric accessibility.  相似文献   

14.
The biosynthesis of collagen on polysomes has been studied by using a newly devised method for obtaining polysomes in high yield from stationary-phase mouse fibroblast (line 3T6; Goldberg &, Green, 1967). These polysomes were completely disaggregated to monosomes by brief exposure to ribonuclease and they lost most of their radioactivity to the top of the sucrose gradients as a result of a 30-minute chase with unlabeled proline. After a ten-minute pulse with [3H]proline, nascent collagen peptides could be identified in these polysomes on sucrose gradients. Most of the proline residues susceptible to hydroxylation by collagen proline hydroxylase were found, in most cases, to be already hydroxylated in these nascent peptides. The nascent nature of these peptides was confirmed by the observation that treatment of the polysomes with RNase transferred the radioactive collagen peptides to the monosome area and these peptides could subsequently be removed to the soluble material at the top of the gradient upon treatment with puromycin. These findings therefore, show clearly that the hydroxylation of proline residues is occurring, in vivo under normal conditions, on nascent collagen chains. In no case was the degree of hydroxylation of the released collagen chains higher than that on the nascent collagen peptides. It seems likely, therefore, that the major site of proline hydroxylation is the nascent collagen peptide.  相似文献   

15.
Amino acid sequence restriction in relation to proteolysis   总被引:1,自引:0,他引:1  
Distributions of amino acid residues in proteins show that proline is overrepresented in sequence positions following two basic residues ([Lys Arg]-[Lys Arg]), i.e. at sites similar to those susceptible to proteolytic cleavages of hormonal pro-forms. Conformational correlations further show that [Lys Arg]-[Lys Arg]-Pro sequences are often (8/11) not adjacent to elements of secondary structure, whereas the opposite applies to [Lys Arg]-[Lys Arg]-nonPro sequences (82/103 adjacent to elements of secondary structure). These distribution patterns from proteins in general also seem applicable in individual protein groups as demonstrated for some dehydrogenases. It appears possible that [Lys Arg]-[Lys Arg]-nonPro constitutes a restricted sequence in proteins, and that proline, in addition to elements of secondary structure, contributes a means of avoiding unacceptable proteolytic processings of proteins in general.  相似文献   

16.
Chen MM  Glover KJ  Imperiali B 《Biochemistry》2007,46(18):5579-5585
The gram-negative bacterium Campylobacter jejuni was recently discovered to contain a general N-linked protein glycosylation pathway. Central to this pathway is PglB, a homologue of the Stt3p subunit of the eukaryotic oligosaccharyl transferase (OT), which is involved in the transfer of an oligosaccharide from a polyisoprenyl pyrophosphate carrier to the asparagine side chain of proteins within the conserved glycosylation sites D/E-X1-N-X2-S/T, where X1 and X2 can be any amino acids except proline. Using a library of peptide substrates and a quantitative radioactivity-based in vitro assay, we assessed the amino acids at each position of the consensus glycosylation sequence for their impact on glycosylation efficiency, whereby the sequence DQNAT was found to be the optimal acceptor substrate. In the context of a full-length folded protein, the differences between variations of the glycosylation sequences were found to be consistent with the trends observed from their peptidyl counterparts, though less dramatic because of additional influences. In addition to characterizing the acceptor preferences of PglB, we also assessed the selectivity toward the glycan donor. Interestingly, despite recent reports of relaxed selectivity toward the glycan donor, PglB was not found to be capable of utilizing glycosyl donors such as dolichyl-pyrophosphate-chitobiose, which is the minimum substrate for the eukaryotic OT process.  相似文献   

17.
18.
The amino acid sequence and the glycosylation motif of the ribosome inactivating protein (RIP) gelonin are identified by Fourier transform ion cyclotron resonance mass spectrometry. Intact gelonin as isolated from the seeds of Gelonium multiflorum consists of at least three different post-translational modified forms: analysis of gelonin peptides as obtained by proteolytic digestion is consistent with the amino acid sequence published by Nolan et al. High resolution mass determination established a glycosylation pattern of GlcNAc2Man(3-5)Xyl. N189 was identified as glycosylation site. The proposed glycan structure is consistent with a standard plant N-glycosylation pattern as found in other RIP. Based on these results we suggest that gelonin is located in the vacuole of Gelonium multiflorum seeds.  相似文献   

19.
Prolyl 4-hydroxylase (EC 1.14.11.2), the enzyme responsible for the post-translational hydroxylation of peptide proline, has been well described in animals but has been little studied in plants. The best characterised example is the enzyme from French bean (Phaseolus vulgaris). In this study, the biochemical properties of this plant enzyme were examined in more detail and, using specific polyclonal antibodies, the localisation of the enzyme was determined. Both alpha- and beta-subunits did not show multiple forms, suggesting a relatively broad specificity of the enzyme complex with respect to the target hydroxylated amino acid sequences. Antibodies to the mammalian and Chlamydomonas enzymes cross-react with the higher plant subunits, indicating that some epitopes are highly conserved. The P. vulgaris enzyme was inhibited by analogues of oxoglutarate, but was not susceptible to doxorubicin. Inhibition of the bean enzyme by an oxaloglycine derivative resulted in the retention of the target (hydroxy)proline-rich protein in the endomembrane system. Immunolocalisation of the enzyme showed close association with the endoplasmic reticulum and Golgi apparatus in root tip cells of P. vulgaris or Tropaeolum majus. This localisation was particularly pronounced in Golgi-associated vesicles of young root tip cells of T. majus, cell types where rapid synthesis and deposition of wall material was observed. These data are consistent with the hypothesis, proposed by Bolwell [G.P. Bolwell, Dynamic aspects of the plant extracellular matrix, Int. Rev. Cytol. 146 (1993) 261-324], that protein hydroxylation must be completed before the glycosylation of the target (hydroxy)proline-rich glycoproteins in the Golgi stack.  相似文献   

20.
The Ara h 2 proteins are major determinants of peanut allergens. These proteins have not been fully studied at the molecular level. It has been previously proposed that there are two isoforms of Ara h 2, based on primary structures that were deduced from two reported cDNA sequences. In this report, four isoforms have been purified and characterized individually. Mass spectrometric methods have been used to determine the protein sequences and to define post‐translational modifications for all four isoforms. Two pairs of isoforms have been identified, corresponding to a long‐chain form and a form that is shorter by 12 amino acids. Each pair is further differentiated by the presence or absence of a two amino acid sequence at the carboxyl terminus of the protein. Modifications that were characterized include site‐specific hydroxylation of proline residues, but no glycosylation was found, in contrast to previous reports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号