首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the nutrient (namely nitrogen and phosphorus) removal efficiency and the governing internal dynamics of the most widely used wetland type, the horizontal subsurface flow reed bed, in receiving domestic septic tank and secondary effluent in a temperate climate such as Ireland, two systems were designed, constructed and rigorously monitored for a period of over 2 years. Nitrogen removal, as expected, was found to be poor across both reed beds, with only 29% removal of TN across the secondary treatment bed and 41% removal across the tertiary treatment bed, with little distinctive seasonal change. A 15N stable isotope tracer study revealed, in line with the results from the chemical analysis, that nitrogen kinetics in the secondary treatment bed were dominated by continuous plant litter decomposition and mineralisation processes converting stored org-N to NH4-N indefinitely. Similar analysis on the tertiary treatment bed indicated that only limited denitrification of the oxidized forms of N was occurring in the anoxic environment of the bed, while NH4-N and org-N were merely changing form on a cyclic basis. Removal of PO4-P from the secondary and tertiary treatment beds was equally poor at rates of 45% and 22%, respectively. While at their maximum growth in the third year of operation, the total phosphorus in the stems and roots of the Phragmites australis in the secondary treatment bed equated to only 10% of the total P removed over the duration of the bed's operation. In the tertiary treatment bed, more seasonal variability was recorded with intermittent negative removal found during winter periods. This was somewhat more reflected in the P-uptake study for this bed with the roots and stems of the Typha and Iris containing phosphorus, which accounted for 31% of the overall mass removed.  相似文献   

2.
An alternating pumped sequencing batch biofilm reactor (APSBBR) system was developed to treat small-scale domestic wastewater. This laboratory system had two reactor tanks, Reactor 1 and Reactor 2, with two identical plastic biofilm modules in each reactor. Reactor 1 of the APSBBR had five operational phases—fill, anoxic, aerobic, settle and draw. In the aerobic phase, the wastewater was circulated between the two reactor tanks with centrifugal pumps and aeration was mainly achieved through oxygen absorption by microorganisms in the biofilms when they were exposed to the air. This paper details the performance of the APSBBR system in treating synthetic domestic wastewater over 18 months. The effluent from the APSBBR system satisfied the European Wastewater Treatment Directive requirements, with respect to COD, ammonium-nitrogen and suspended solids. The biofilm growth in the two reactor tanks was different due to the difference in substrate loadings and growth conditions.  相似文献   

3.
The feasibility of treating municipal wastewater by a combined ozone-activated sludge continuous flow system was studied. Lab-scale experiments of both single activated sludge and combined ozone-activated sludge processes were carried out to determine the kinetic coefficients of the biological stage. The results obtained indicated a clear improvement in the kinetic parameters of the aerobic oxidation when a pre-ozonation stage was applied. Particularly, COD removal and nitrification rates were highly increased. The biokinetic parameters were also used to simulate and optimize the continuous reaction system. From the model prediction it was concluded that the integrated process (i.e., ozone-ASP) may significantly increase the waste reduction capacity. The results presented here provide a useful basis for further scaling up and efficient operation of ozone-ASP units in wastewater treatment processes.  相似文献   

4.
The efficiency of stabilization pond treatment of domestic wastewater in removing culturable cells of motile Aeromonas and its influence on the incidence of resistance to seven antibiotics were investigated in this study. Removal efficiency was higher (P < 0.001) in the warm months (98.8%) than in the cold months (97%). Among the 264 isolates, 163 were Aeromonas caviae, 24 were A. hydrophila, and 54 were A. sobria. Twenty-three isolates could not be identified to the species level. In the influent, A. caviae dominated in both cold and warm months. In the water samples originating from the influent, A. sobria was present at higher percentages in the warm period. All the isolates were resistant to amoxicillin and most of them (73%) exhibited resistance to cephalothin. Of the three species tested, A. sobria was more susceptible to antibiotics than either A. caviae or A. hydrophila. The most striking difference among the species was seen in resistance to cephalothin. There were 91 % of A. caviae strains and 96% of A. hydrophila isolates that were resistant to cephalothin. However, only 9% of A. sobria strains exhibited resistance to this drug. The high incidence of resistance in raw sewage was connected with a high proportion of A. caviae, whereas in the water samples collected from the effluent during the warm months, a high proportion of A. sobria decreased the total amount of multiple-resistant bacteria. Results demonstrated the need for identification to the species level.Offprint requests to: L. Hassani.  相似文献   

5.
Polyhydroxyalkanoate (PHA) is a class of biodegradable plastics that have great potential applications in the near future. In this study, the micro-biodiversity and productivity of PHA-accumulating bacteria in activated sludge from a domestic wastewater treatment plant were investigated. A previously reported primer set and a selfdesigned primer set (phaCF1BO/phaCR2BO) were both used to amplify the PHA synthase (phaC) gene of isolated colonies. The new primers demonstrated higher sensitivity for phaC, and combining the PCR results of the two primer sets was able to widen the range of detected genera and raise the sensitivity to nearly 90%. Results showed that 85.3% of the identified bacteria were Gram-negative, with Ralstonia as the dominant genus, and 14.7% were Gram-positive. In addition, Zoogloea and Rhizobium contained the highest amounts of intracellular PHA. It is apparent that glucose was a better carbon source than pentone or tryptone for promoting PHA production in Micrococcus. Two different classes, class I and class II, of phaC were detected from alphaproteobacteria, betaproteobacteria, and gammaproteobacteria, indicating the wide diversity of PHA-accumulating bacteria in this particular sampling site. Simultaneous wastewater treatment and PHA production is promising by adopting the high PHAaccumulating bacteria isolated from activated sludge.  相似文献   

6.
The purpose of this study is to evaluate the efficiency of hybrid constructed wetlands (HCWs) in a rural mountainous area. The experiment was set up in small rural community named Tidili within the region of Marrakech, Morocco. The wastewater treatment plant was composed of three vertical flow constructed wetlands (VFCWs) working in parallel, followed by two parallel horizontal-subsurface flow constructed wetlands (HFCWs), with hydraulic loading rates of 0.5 and 0.75 m3/m2.d, respectively. The two units were planted with Phragmites australis at a density of 4 plants/m2. Wastewater samples were collected at the inlet of the storage tank and at the outlet of the whole system (VFCWs, HFCWs) stages. The main removal percentages of total suspended solids (TSS), biochemical oxygen demand measured in a 5-day test (BOD5), chemical oxygen demand (COD), total nitrogen, and total phosphorus were respectively 95%, 93%, 91%, 67%, and 62%. The system showed a very high capacity to remove total coliforms, fecal coliforms, and fecal streptococci (4.46, 4.31, and 4.10 Log units, respectively). Artificial neural networks (ANNs) were used to model the quality parameters (TSS, BOD5, COD) and total coliforms and fecal streptococci. Based on the obtained results, the ANN model could be considered as an efficient tool to predict the studied phytoremediation performances using HCWs.  相似文献   

7.
Highlights? EBPR is a mature, effective technology to concentrate P from dilute streams. ? EBPR sludge is rich in phosphorus: it can be applied to land. ? Phosphorus in EBPR sludge can be recovered as struvite; P needs to first be solubilized. ? Solubilization of P through anaerobic digestion is attractive, but complexing with metal ions needs to be minimized.  相似文献   

8.
Addressing the need to recover energy from the treatment of domestic wastewater, a 120-L microbial electrolysis cell was operated on site in Northern England, using raw domestic wastewater to produce virtually pure hydrogen gas (100?±?6.4 %) for a period of over 3 months. The volumetric loading rate was 0.14 kg of chemical oxygen demand (COD) per cubic metre per day, just below the typical loading rates for activated sludge of 0.2–2 kg?COD?m?3?day?1, at an energetic cost of 2.3 kJ/g?COD, which is below the values for activated sludge 2.5–7.2 kJ/g?COD. The reactor produced an equivalent of 0.015 L?H2?L?1?day?1, and recovered around 70 % of the electrical energy input with a coulombic efficiency of 55 %. Although the reactor did not reach the breakeven point of 100 % electrical energy recovery and COD removal was limited, improved hydrogen capture and reactor design could increase the performance levels substantially. Importantly, for the first time, a ‘proof of concept’ has been made, showing that this technology is capable of energy capture as hydrogen gas from low strength domestic wastewaters at ambient temperatures.  相似文献   

9.
In this research, low strength synthetic wastewaters with chemical oxygen demand less than 300 mg L?1 were treated at different concentrations in a bioelectrochemical desalination process. A process optimization model was utilized to study the performance of the photosynthetic bioelectrochemical desalination process. The variables include substrate (chemical oxygen demand) concentration, total dissolved solids, and microalgae biomass concentration in the cathode chamber. Relationships between the chemical oxygen demand concentration, microalgae, and salt concentrations were evaluated. Power densities and potential energy benefits from microalgal biomass growth were discussed. The results from this study demonstrated the reliability and reproducibility of the photosynthetic microbial desalination process performance followed by a response surface methodology optimization. This study also confirms the suitability of bioelectrochemical desalination process for treating low substrate wastewaters such as agricultural wastewaters, anaerobic digester effluents, and septic tank effluents for net energy production and water desalination.  相似文献   

10.
Methods used for biosurfactant recovery include solvent extraction, precipitation, crystallization, centrifugation and foam fractionation. These methods cannot be used when distillery wastewater (DW) is used as the nutrient medium for biosurfactant production by Pseudomonas aeruginosa strain BS2, because recovery of biosurfactant by any of these methods imparts color to the biosurfactant. The biosurfactant has a nonaesthetic appearance with lowered surface active properties. These methods cannot be used for continuous recovery of biosurfactant during cultivation. Hence, a new downstream technique for biosurfactant recovery from fermented DW comprised of adsorption-desorption processes using wood-based activated carbon (WAC) was developed. This study involves batch experiments to standardize the factors affecting the rate of biosurfactant adsorption onto WAC. WAC was the most efficient adsorbent among various ones tested (i.e., silica gel, activated alumina and zeolite). The WAC (1% w v(-1)), equilibrium time (90 min), pH range of 5-10 and temperature of 40 degrees C were optimum to achieve 99.5% adsorption efficiency. Adsorption kinetics and intraparticle diffusion studies revealed the involvement of both boundary layer diffusion and intraparticle diffusion. The Langmuir adsorption isotherm of WAC indicated the formation of a monolayer coverage of the biosurfactant over a homogeneous carbon surface, while the Freundlich isotherm showed high adsorption at strong solute concentrations and low adsorption at dilute solute concentrations. WAC concentration of 4% w v(-1) facilitated complete removal of the biosurfactant from collapsed foam (contained 5-fold higher concentration of biosurfactant than was present in fermented DW). Biosurfactant adsorption was of chemisorption type. Acetone (polar solvent) was a specific viable eluant screened among various ones tested because it selectively facilitated maximum recovery, i.e., 89% biosurfactant from WAC. By acetone treatment, complete regeneration of WAC was feasible and WAC can be reused for biosurfactant recovery up to 3 cycles. The recovered biosurfactant showed improved surface-active property (i.e., much lower critical micelle concentration value of 0.013 verses 0.028 mg mL(-1) for biosurfactant recovered by classical methods). The reuse potential of WAC was assessed and results suggest that the carbon can be reused for three consecutive cycles for biosurfactant adsorption from fermented wastewater without any decrease in adsorption efficiency. Thus, this process forms a basis for continuous recovery of biosurfactant from fermented DW and concentrated foam. This process reduces the use of high cost solvent, avoids end product inhibition and minimizes product degradation.  相似文献   

11.
A new compact wastewater treatment system for use in single houses has been constructed in eastern Norway. The system is based on the principles of sub-surface flow constructed wetlands using various types of Filtralite as filter media. It consists of a septic tank followed by an aerobic biofilter succeeded by an upflow saturated filter. The aerobic biofilter is essential to remove organic matter and achieve nitrification, while the upflow filter polishes the wastewater and removes microorganisms and phosphorus. During the first 3 years of operation, the system has show stable and high removal with the following average values measured from the outlet of septic tank to the outlet of the upflow filter: 97.0%-BOD7, 30%-N, 99.4%-P, and 70.8%-SS. No Escherichia coli or somatic coliphages have been detected in the effluent. Due to considerable removal of organic mater, nutrients, and pathogens, the effluent will not negatively affect water and soil ecosystems. The system requires low maintenance and is designed to remove phosphorus for 5 years before renewal of the upflow filter media. When saturated with phosphorus, the media is a suitable fertilizer for plant production.  相似文献   

12.

Boron is an important element for plants, humans, and animals in limited amounts. However, excess amounts can cause adverse effects in both humans and plants, necessitating its removal from certain systems. Boron compounds are used in many industrial applications, including in developing sectors like alternative energy technology; as a result, the need for this element is increasing and industries are looking towards boron recovery for the sustained use of this element in their products. While the literature on boron removal strategies is abundant, there is a relative lack of studies on boron recovery, with no review papers having yet addressed this topic. In this review, both boron removal and recovery techniques involving conventional approaches and membrane processes are examined to juxtapose the states of the science in these two related—and increasingly important—processes.

Graphical abstract
  相似文献   

13.
This contribution summarizes the nutrient and metal removal of a free water surface constructed wetland, compares it with the previous small-scale prototype and discusses the observed differences. Several locally available macrophyte species were transplanted into the wetland. Eichhornia crassipes (water hyacinth) showed a fast growth and it soon became dominant, attaining 80% cover of the wetland surface. Typha domingensis (cattail) and Panicum elephantipes (elephant panicgrass) developed as accompanying species attaining 14 and 4% cover. The wetland removed 86% of Cr and 67% of Ni. Zn concentrations were below 50 μg l−1 in most samplings. The FeS precipitation probably caused the high retention of Fe (95%). The outcoming water was anoxic in most samplings. Phosphate and ammonium were not retained within the wetland while 70% and 60% of the incoming nitrate and nitrite were removed. Large denitrification losses are suggested. Cr, Ni and Zn were retained by the macrophytes in the larger wetland and in sediment in the small-scale one. Differences in the retention mechanism of the two wetlands are discussed.  相似文献   

14.
Ammonium recovery using a two chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by DC-voltammetry were higher than 6 A/m2 for both operated MFCs. Also continuous operation at lower external resistance (250 Ω) showed an increased current density (0.9 A/m2). Effective ammonium recovery can be achieved by migrational ion flux through the cation exchange membrane to the cathode chamber, driven by the electron production from degradation of organic substrate. The charge transport was proportional to the concentration of ions. Nonetheless, a concentration gradient will influence the charge transport. Furthermore, a charge exchange process can influence the charge transport and therefore the recovery of specific ions.  相似文献   

15.
Ramat Hovav is a major chemical industrial park manufacturing pharmaceuticals, pesticides, and various aliphatic and aromatic halogens. All wastewater streams are collected in large evaporation ponds. Salinity in the evaporation ponds fluctuates between 3% (w/v) and saturation and pH values range between 2.0 and 10.0. We looked for microorganisms surviving in these extreme environmental conditions and found that 2 yeast strains dominate this biotope. 18S rDNA sequence analysis identified the isolates as Pichia guilliermondii and Rhodotorula mucilaginosa. Both isolates grew in NaCl concentrations ranging up to 3.5 M and 2.5 M, respectively, and at a pH range of 2-10. There was a distinct difference between the Rhodotorula and Pichia strains and S. cerevisiae RS16 that served as a control strain with respect to accumulation of osmoregulators and internal ion concentrations when exposed to osmotic stress. The Pichia and Rhodotorula strains maintained high glycerol concentration also in media low in NaCl. Utilization of various carbon sources was examined. Using a tetrazolium-based assay we show that the Rhodotorula and Pichia strains are capable of utilizing a wide range of different carbon sources including anthracene, phenanthrene, and other cyclic aromatic hydrocarbons.  相似文献   

16.
In the past as well as today there have been two conflicting opinions as to whether changes in the algal species in water bodies indicate polymorphism or the development of separate species. Similar changes were also found in High Rade Algae Pond (HRAP) used for wastewater treatment, effluent reclamation and protein production. To critically examine both opinions, samples of HRAP effluent were taken and the algal species identified and measured continuously, using conventional methods.Two main algal species were identified. These remained stable during all four monitoring sessions over a three-year period. The external changes observed in the algae were a reflection of controlled periods of organic loading and the conditions under which the pond was operated, such as retention time (a dependant of radiation), ambient temperature, effluent depth and aeration methods.Current address: Institute for Desert Research, Ben-Gurion University of the Negev, Sde-Boker, Israel 84990  相似文献   

17.
Domestic wastewater contains various pathogens, which, if not sufficiently eliminated, may enter the receiving water bodies and cause water-transmitted diseases. Among the waterborne pathogens, viruses may occur, survive and/or decay much differently from bacteria in water. In many cases, the diseases caused by viruses are more severe. Therefore, research efforts are mainly directed at the behavior of viruses in water environments, as well as the elimination of viruses from wastewater. In this paper, an overview of the occurrence of viruses in wastewater is presented, together with their categories, methods of detection and potential to cause waterborne diseases. As wastewater treatment plants are critical nodes for the influx and termination of virus transmission, the behavior of viruses at each stage of treatment is reviewed. Particular attention is paid to the unit operations, which play crucial roles in virus removals, such as coagulation and membrane filtration, and that for virus inactivation, such as chemical disinfection and UV irradiation. Future needs for the development of new technologies for virus elimination, source control, and finding more suitable indicators of viral pathogens are also highlighted.  相似文献   

18.
19.
Some 118 Salmonella strains isolated before and after treatment in stabilization ponds were tested for antimicrobial resistance. In the treatment plant, which decreases the abundance of Salmonella by 99%, a significantly lower level of antibiotic resistance (P<0.01) was identified at the system's inflow point (19%) than at its outflow (29%). The serotypes most frequently identified as having multiple antibiotic resistance were Salmonella paratyphi B and S. typhimurium. High tetracycline resistance was observed at all sampling points, followed by resistance to ampicillin and streptomycin. Antibiotic resistance can be transferred from Salmonella to other members of the Enterobacteriaceae family, such as Escherichia coli K12; transfer frequencies in nutrient broth and filtered sewage water were 4.5×10-4 and 7×10-7, respectively.The authors are with the Université CADI AYYAD, Faculté des Sciences—Semlalia, Département de Biologie, Laboratoire de Microbiologie, Bd Le Prince My Abdallah, BP. S.15, Marrakech, Morocco.  相似文献   

20.
The purpose of this work was to determine optimum sequence retention times for nutrient removal with low-cost using very short aeration time in an SBR treating domestic wastewater. During the study, four different CYCLEs were evaluated, with the highest removal efficiencies recorded for the CYCLE with fill, anaerobic, aerobic1, anoxic, aerobic2, settle, and decant sequences operated at retention times of 0.5, 2, 2, 1, 0.75, 1, and 0.5 h, respectively. For this CYCLE, the removal efficiencies of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3–N), total phosphorus (TP), and ortho-phosphate (PO4–P) were found, on average, to be 91, 78, 85, 87, and 83%, respectively. The optimum sequence retention time was determined via the analysis of variance (ANOVA) using the Matlab software (Mathworks Inc.). The data indicated that the total time of the aerobic sequences was shorter than those of previous studies for similar level of removal efficiencies in all parameters including N and P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号