首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hepatoportal region is important for glucose sensing; however, the relationship between the hepatoportal glucose-sensing system and the postprandial rapid phase of the insulin response has been unclear. We examined whether a rapid-phase insulin response to low amounts of intraportal glucose infusion would occur, compared that with the response to intrajugular glucose infusion in conscious rats, and assessed whether this sensing system was associated with autonomic nerve activity. The increases in plasma glucose concentration did not differ between the two infusions at 3 min, but the rapid-phase insulin response was detected only in the intraportal infusion. A sharp and rapid insulin response was observed at 3 min after intraportal infusion of a small amount of glucose but not after intrajugular infusion. Furthermore, this insulin response was also induced by intraportal fructose infusion but not by nonmetabolizable sugars. The rapid-phase insulin response at 3 min during intraportal infusion did not differ between rats that had undergone hepatic vagotomy or chemical sympathectomy with 6-hydroxydopamine compared with control rats, but this response disappeared in rats that had undergone chemical vagotomy with atropine. We conclude that the elevation of glucose concentration in the hepatoportal region induced afferent signals from undetectable sensors and that these signals stimulate pancreas to induce the rapid-phase insulin response via cholinergic nerve action.  相似文献   

2.
To determine whether rats could adapt to a chronic exogenous supply of adrenaline by a decrease in the well-known inhibitory effect of adrenaline on insulin secretion, plasma glucose and insulin levels were measured in unanesthetized control and adrenaline-treated rats (300 mug/kg twice a day for 28 days) during an adrenaline infusion (0.75 mug kg-1 min-1), after an acute glucose load (0.5 g/kg), and during the simultaneous administration of both agents. Chronic treatment with adrenaline did not modify the initial glucose levels but it greatly diminished the basal insulin values (21.57+/-2.48 vs. 44.69+/-3.3muU/ml, p less than 0.01). In the control rats, despite the elevated glucose concentrations, a significant drop in plasma insulin levels was observed within the first 15 min of adrenaline infusion, followed by a period of recovery. In the adrenaline-treated group, in which plasma glucose levels were lower than in control animals, plasma insulin levels did not drop as in control rats, but a significant increase was found after 30 min of infusion. During the intravenous glucose tolerance test, the plasma glucose and insulin responses showed similar patterns; however, during the concomitant adrenaline infusion, the treated rats showed a better glucose tolerance than their controls. These results indicate that rats chronically treated with adrenaline adapt to the diabetogenic effect of an infusion of adrenaline by have a lower inhibition of insulin release, although the lower basal insulin levels may indicate a greater sensitivity to endogenous insulin.  相似文献   

3.
Elevation of plasma lactate levels induces peripheral insulin resistance, but the underlying mechanisms are unclear. We examined whether lactate infusion in rats suppresses glycolysis preceding insulin resistance and whether lactate-induced insulin resistance is accompanied by altered insulin signaling and/or insulin-stimulated glucose transport in skeletal muscle. Hyperinsulinemic euglycemic clamps were conducted for 6 h in conscious, overnight-fasted rats with or without lactate infusion (120 micromol x kg(-1) x min(-1)) during the final 3.5 h. Lactate infusion increased plasma lactate levels about fourfold. The elevation of plasma lactate had rapid effects to suppress insulin-stimulated glycolysis, which clearly preceded its effect to decrease insulin-stimulated glucose uptake. Both submaximal and maximal insulin-stimulated glucose transport decreased 25-30% (P < 0.05) in soleus but not in epitrochlearis muscles of lactate-infused rats. Lactate infusion did not alter insulin's ability to phosphorylate the insulin receptor, the insulin receptor substrate (IRS)-1, or IRS-2 but decreased insulin's ability to stimulate IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activities and Akt/protein kinase B activity by 47, 75, and 55%, respectively (P < 0.05 for all). In conclusion, elevation of plasma lactate suppressed glycolysis before its effect on insulin-stimulated glucose uptake, consistent with the hypothesis that suppression of glucose metabolism could precede and cause insulin resistance. In addition, lactate-induced insulin resistance was associated with impaired insulin signaling and decreased insulin-stimulated glucose transport in skeletal muscle.  相似文献   

4.
We previously showed that chronic insulin infusion induces insulin resistance, hyperendothelinemia, and hypertension in rats (C. C. Juan, V. S. Fang, C. F. Kwok, J. C. Perng, Y. C. Chou, and L. T. Ho. Metabolism 48: 465-471, 1999). Endothelin-1 (ET-1), a potent vasoconstrictor, is suggested to play an important role in maintaining vascular tone and regulating blood pressure, and insulin increases ET-1 production in vivo and in vitro. In the present study, BQ-610, a selective endothelin A receptor antagonist, was used to examine the role of ET-1 in insulin-induced hypertension in rats. BQ-610 (0.7 mg/ml; 0.5 ml/kg body wt) or normal saline was given intraperitoneally two times daily for 25 days to groups of rats infused with either saline or insulin (2 U/day via sc-implanted osmotic pumps), and changes in plasma levels of insulin, glucose, and ET-1 and the systolic blood pressure were measured over the experimental period, whereas changes in insulin sensitivity were examined at the end of the experimental period. Plasma insulin and ET-1 levels were measured by RIA, plasma glucose levels using a glucose analyzer, systolic blood pressure by the tail-cuff method, and insulin sensitivity by an oral glucose tolerance test. Our studies showed that insulin infusion caused sustained hyperinsulinemia in both saline- and BQ-610-injected rats over the infusion period. After pump implantation (2 wk), the systolic blood pressure was significantly higher in insulin-infused rats than in saline-infused rats in the saline-injected group (133 +/- 3.1 vs. 113 +/- 1.1 mmHg, P < 0.05) but not in the BQ-610-injected group (117 +/- 1.2 vs. 117 +/- 1.8 mmHg). Plasma ET-1 levels in both sets of insulin-infused rats were higher than in saline-infused controls (2.5 +/- 0.6 and 2.5 +/- 0.8 vs. 1.8 +/- 0.4 and 1.7 +/- 0.3 pmol/l, P < 0.05). Oral glucose tolerance tests showed that BQ-610 treatment did not prevent the insulin resistance caused by chronic insulin infusion. No significant changes were found in insulin sensitivity and blood pressure in saline-infused rats treated with BQ-610. In a separate experiment, insulin infusion induced the increase in arterial ET-1 content, hypertension, and subsequent plasma ET-1 elevation in rats. These results suggest that, in the insulin infusion rat model, ET-1 plays a mediating role in the development of hypertension, but not of insulin resistance.  相似文献   

5.
BackgroundAlthough insulin resistance (IR) is a key factor in the pathogenesis of type 2 diabetes (T2D), the precise role of insulin in the development of IR remains unclear. Therefore, we investigated whether chronic basal insulin infusion is causative in the development of glucose intolerance.MethodsNormoglycemic lean rats surgically instrumented with i.v. catheters were infused with insulin (3 mU/kg/min) or physiological saline for 6 weeks. At infusion-end, plasma insulin levels along with glucose tolerance were assessed.ResultsSix weeks of insulin infusion induced glucose intolerance and impaired insulin response in healthy rats. Interestingly, the effects of chronic insulin infusion were completely normalized following 24 h withdrawal of exogenous insulin and plasma insulin response to glucose challenge was enhanced, suggesting improved insulin secretory capacity. As a result of this finding, we assessed whether the effects of insulin therapy followed by a washout could ameliorate established glucose intolerance in obese rats. Obese rats were similarly instrumented and infused with insulin or physiological saline for 7 days followed by 24 h washout. Seven day-insulin therapy in obese rats significantly improved glucose tolerance, which was attributed to improved insulin secretory capacity and improved insulin signaling in liver and skeletal muscle.ConclusionModerate infusion of insulin alone is sufficient to cause glucose intolerance and impair endogenous insulin secretory capacity, whereas short-term, intensive insulin therapy followed by insulin removal effectively improves glucose tolerance, insulin response and peripheral insulin sensitivity in obese rats.General significanceNew insight into the link between insulin and glucose intolerance may optimize T2D management.  相似文献   

6.
Nitric oxide decreases insulin resistance induced by high-fructose feeding.   总被引:1,自引:0,他引:1  
The effect of nitric oxide (NO) on insulin resistance was studied in high-fructose-fed rats. A sequential hyperinsulinemic euglycemic clamp procedure was employed (insulin infusion rates: 3 and 30 mU/kg BW/min) in 12 high-fructose-fed rats and 12 chow-fed rats while awake. Half of the high-fructose-fed and the chow-fed rats, respectively, were continuously given sodium nitroprusside (SNP, 3 ng/kg BW/min) during the clamp study. Blood glucose was clamped at the fasting level in each rat. Plasma insulin levels during the 3 and 30 mU/kg BW/min insulin infusions were 30 and 400 microU/ml, respectively. Metabolic clearance rate of glucose (MCR) was regarded as an index of whole body insulin action. At both 3 and 30 mU/kg BW/min insulin infusions, high-fructose feeding showed a significant decrease in MCR compared with the chow-fed rats. However, decreased MCRs were stimulated by SNP administration and reached similar levels as the chow-fed rats. SNP infusion did not influence MCRs in the chow-fed rats. Therefore it could be concluded that NO can improve insulin resistance induced by high-fructose feeding.  相似文献   

7.
Enterostatin has previously been reported to alter serum insulin and corticosterone levels after central administration of the peptide. The purpose of the present study was to investigate the effect of peripheral administration of enterostatin on insulin and corticosterone levels as well as the response of plasma insulin to enterostatin administration in adrena-lectomized rats. Female Sprague-Dawley rats were given a bolus injection intravenously with enterostatin alone or together with glucose. Enterostatin increased basal plasma levels of insulin, but significantly inhibited the increase in plasma insulin stimulated by glucose. Plasma corticosterone levels were not altered after a single intravenous injection of enterostatin. In rats infused chronically with enterostatin, plasma insulin levels were significantly reduced and plasma corticosterone levels were increased. The daily food intake was lower in these rats, but there was no effect on body weight. After adrenalectomy, the responsiveness of plasma insulin to enterostatin infusion was completely abolished. Furthermore, adrenalectomy itself reduced basal plasma levels of insulin and increased plasma levels of endogenous enterostatin. These results suggest that peripheral enterostatin administration produces a similar effect as central infusion of the peptide, and that the glucocorticoid hormones are involved in the regulation of plasma insulin by enterostatin.  相似文献   

8.
The effect of insulin infusion in vivo on muscle protein synthesis was investigated in rats. In 10-days-streptozotocin-diabetic rats infused in vivo with amino acids and glucose, the rate of protein synthesis per unit of RNA (RNA activity) was markedly decreased. Pre-treatment with large doses of insulin at 17 and 1 h before the infusion fully restored RNA activity to normal. Infusion of insulin for 6 h with amino acids and glucose did not restore RNA activity to normal in the diabetic rats. However, in diabetic-adrenalectomized rats similar infusions of insulin fully restored RNA activity to normal. Measurements of plasma corticosterone concentrations indicated a 50% increase in the diabetic rats. Since pre-treatment with corticosterone suppressed the stimulatory effect of insulin infusion on RNA activity in adrenalectomized rats, and since corticosterone treatment for 6 days suppressed RNA activity even though insulin concentrations were elevated, it is suggested that increased concentrations of corticosterone are responsible for the lag in response to insulin in the diabetic rat. This means that the catabolic effects of glucocorticoids must be also considered together with the catabolic effect of insulin lack in diabetes.  相似文献   

9.
In an attempt to probe the effect of beta-endorphin on insulin resistance, we used Wistar rats that were fed fructose-rich chow to induce insulin resistance. Insulin action on glucose disposal rate (GDR) was measured using the hyperinsulinemic euglycemic clamp technique, in which glucose (variable), insulin (40 mU/kg/min), and beta-endorphin (6 ng/kg/min) or vehicle were initiated simultaneously and continued for 120 min. A marked reduction in insulin-stimulated GDR was observed in fructose-fed rats compared to normal control rats. Infusion of beta-endorphin reversed the value of GDR, which was inhibited by naloxone and naloxonazine each at doses sufficient to block opioid mu-receptors. Opioid mu-receptors may therefore be activated by beta-endorphin to improve insulin resistance. Next, soleus muscle was isolated to investigate the effect of beta-endorphin on insulin signals. Insulin resistance in rats induced by excess fructose was associated with the impaired insulin receptor (IR), tyrosine autophosphorylation, and insulin receptor substrate (IRS)-1 protein content in addition to the significant decrease in IRS-1 tyrosine phosphorylation in soleus muscle. This impaired glucose transportation was also due to signaling defects that included an attenuated p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-kinase) and Akt serine phosphorylation. However, IR protein levels were not markedly changed in rats with insulin resistance. beta-endorphin infusion reversed the fructose-induced decrement in the insulin-signaling cascade with increased GDR. Apart from IR protein levels, infusion of beta-endorphin reversed the decrease in protein expression for the IRS-1, p85 regulatory subunit of PI3-kinase, and Akt serine phosphorylation in soleus muscle in fructose-fed rats. The decrease in insulin-stimulated protein expression of glucose transporter subtype 4 (GLUT 4) in fructose-fed rats returned to near-normal levels after beta-endorphin infusion. Infusion of beta-endorphin may improve insulin resistance by modulating the insulin-signaling pathway to reverse insulin responsiveness.  相似文献   

10.
The effects of biotin on insulin secretion in pair-fed control rats and biotin-deficient rats were investigated using the method of isolated pancreas perfusion. Isolated pancreas perfusion was performed using 20 mM glucose, 10 mM arginine, and 20 mM glucose plus various concentrations of biotin (20 mM glucose + biotin solution) as stimulants of insulin secretion. The insulin response to 20 mM glucose in biotin-deficient rats was approximately 22% of that seen in control rats. The level of the insulin response to 10 mM arginine was also significantly lower in biotin-deficient rats than in control rats. These results indicate that insulin release from the pancreas was disturbed in biotin-deficient rats. The insulin responses to 20 mM glucose + 1 mM biotin in biotin-deficient and control rats increased to 165% and 185%, respectively, of that to 20 mM glucose. These biotin-induced increases in glucose-stimulated insulin release were evident within the first few minutes of the infusion. An enhancement of the arginine-induced insulin response in control rats was not found when arginine and biotin was administered. These results suggest that biotin may play an important role in the mechanism by which glucose stimulates insulin secretion from the beta cells of the pancreatic islets.  相似文献   

11.
12.
1. The infusion of sodium dichloroacetate into rats with severe diabetic ketoacidosis over 4h caused a 2mM decrease in blood glucose, and small falls in blood lactate and pyruvate concentrations. Similar findings had been reported in normal rats (Blackshear et al., 1974). In contrast there was a marked decrease in blood ketone-body concentration in the diabetic ketoacidotic rats after dichloroacetate treatment. 2. The infusion of insulin alone rapidly decreased blood glucose and ketone bodies, but caused an increase in blood lactate and pyruvate. 3. Dichloroacetate did not affect the response to insulin of blood glucose and ketone bodies, but abolished the increase of lactate and pyruvate seen after insulin infusion. 4. Neither insulin nor dichloroacetate stimulated glucose disappearance after functional hepatectomy, but both agents decreased the accumulation in blood of lactate, pyruvate and alanine. 5. Dichloroacetate inhibited 3-hydroxybutyrate uptake by the extra-splachnic tissues; insulin reversed this effect. Ketone-body production must have decreased, as hepatic ketone-body content was unchanged by dicholoracetate yet blood concentrations decreased. 6. It was concluded that: (a) dichloroacetate had qualitatively similar effects on glucose metabolism in severely ketotic rats to those observed in non-diabetic starved animals; (b) insulin and dichloroacetate both separately and together, decreased the net release of lactate, pyruvate and alanine from the extra-splachnic tissues, possibly through a similar mechanism; (c) insulin reversed the inhibition of 3-hydroxybutyrate uptake caused by dichloroacetate; (d) dichloroacetate inhibited ketone-body production in severe ketoacidosis.  相似文献   

13.
Previous studies have suggested that alterations in the classical neuroendocrine system may not be responsible for the increased glucose metabolism observed during hypermetabolic sepsis. The purpose of the present study was to determine whether inhibition of the cyclooxygenase pathway with indomethacin, which prevents the production of arachidonic acid metabolites by this pathway and the sepsis-induced increase in body temperature, would abolish the increases in glucose appearance (Ra), recycling, and hyperlactacidemia. Sepsis was induced in chronically catheterized conscious rats by multiple injections of live Escherichia coli via a subcutaneous catheter. Septic animals received iv injections of indomethacin (5 mg/kg) every 6-8 hr to block the cyclooxygenase pathway. Glucose kinetics were assessed in 24-hr fasted rats using a constant iv infusion of [6-3H]- and [U-14C]glucose. Treatment with indomethacin prevented the 1-2 degrees C increase in body temperature observed in septic animals. Septic rats exhibited an elevated plasma lactate concentration and increased rates of glucose appearance and recycling. The sepsis-induced alterations in these variables were not attenuated by indomethacin. These results suggest that neither elevated body temperature nor the generation of arachidonic acid metabolites of the cyclooxygenase pathway is responsible for increasing glucose production in hypermetabolic septic rats.  相似文献   

14.
The effect of intravenous infusion of islet amyloid polypeptide (IAPP/amylin) and calcitonin gene-related peptide (CGRP) on blood glucose and plasma insulin in the basal and glucose-stimulated state was investigated in the anaesthetized rat. Both peptides had no effect on basal blood glucose or plasma insulin but following an intravenous bolus of glucose, CGRP-treated rats were hyperglycaemic and hyperinsulinaemic compared with control animals which were similar to IAPP-treated rats. IAPP had no effect on glucose-stimulated islet insulin secretion. These results suggest that CGRP, but not IAPP, alters glucose removalin vivo.  相似文献   

15.
The purpose of this study was to determine the effect of exercise on the rate of onset of hypoglycemia induced by infusion of excess insulin (0.8 mU.min-1.100 g-1). Rats were either fasted overnight (FS) or fed ad libitum (FD). FS rats were killed after 5, 10, or 15 min of infusion at rest or after running on the treadmill at 21 m/min and 15% grade. FD rats were killed after 10, 20, or 40 min of infusion at rest or after exercise. Rats were also killed 15 min postexercise for FS and 60 or 120 min postexercise for FD with continued insulin infusion. The progressive decline in blood glucose was not altered by exercise in the FS rats. FD rats showed a significant difference due to exercise only after 40 min (rest 4.2 +/- 0.3 mM, exercise 3.2 +/- 0.2 mM). A significant postexercise repletion of glycogen was observed in red vastus and soleus muscles of FD rats despite the decreasing blood glucose values. These data indicate that exercise accelerates the rate of development of hypoglycemia in FD rats. In the FS rats, where the rate of decline in blood glucose was greater, exercise had no effect on the time course of development of hypoglycemia.  相似文献   

16.
Ketogenesis, inferred by the production of acetoacetate plus ß‐hydroxybutyrate, in isolated perfused livers from 24‐h fasted diabetic rats submitted to short‐term insulin‐induced hypoglycemia (IIH) was investigated. For this purpose, alloxan‐diabetic rats that received intraperitoneal regular insulin (IIH group) or saline (COG group) injection were compared. An additional group of diabetic rats which received oral glucose (gavage) (100 mg kg?1) 15 min after insulin administration (IIH + glucose group) was included. The studies were performed 30 min after insulin (1.0 U kg?1) or saline injection. The ketogenesis before octanoate infusion was diminished (p < 0.05) in livers from rats which received insulin (COG vs. IIH group) or insulin plus glucose (COG vs. IIH + glucose group). However, the liver ketogenic capacity during the infusion of octanoate (0.3 mM) was maintained (COG vs. IIH group and COG vs. IIH + glucose group). In addition, the blood concentration of ketone bodies was not influenced by the administration of insulin or insulin plus glucose. Taken together, the results showed that inspite the fact that insulin and glucose inhibits ketogenesis, livers from diabetic rats submitted to short‐term IIH which received insulin or insulin plus glucose showed maintained capacity to produce acetoacetate and ß‐hydroxybutyrate from octanoate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Triiodothyronine induced hyperthyroidism caused significantly elevated basal and stimulated glucose and insulin levels in rats. The release of Gastric Inhibitory Polypeptide (GIP) following an oral glucose load was not significantly different between euthyroid and hyperthyroid rats. The insulin response, however, was significantly higher in hyperthyroid rats. Following intravenous glucose hyperthyroid rats showed a diminished insulin response when compared with euthyroid rats but intravenous infusion of glucose together with GIP caused a significantly higher insulin response in hyperthyroid rats. It is hypothesized that in hyperthyroidism there is an increased sensitivity to the insulinotropic action of GIP and that this mechanism could emphasize the importance of the enteroinsular axis in pathophysiological states.  相似文献   

18.
目的探讨抗炎药水杨酸钠对胰岛素抵抗大鼠胰岛素敏感性的影响及其作用机制。方法分别给大鼠静脉输注脂肪乳+肝素,脂肪乳+肝素+水杨酸钠和生理盐水7 h,并在输注的最后2 h,行清醒状态高胰岛素-正血糖钳夹试验,测定血浆葡萄糖、游离脂肪酸(FFA)、胰岛素和C-肽水平,检测肝脏、肌肉中胰岛素受体底物-1(IRS-1)及307位丝氨酸磷酸化的IRS-1表达。结果输注脂肪乳大鼠葡萄糖输注率(GIR)是输注生理盐水大鼠的45%,水杨酸钠可使GIR提高1.3倍(P0.01)。脂肪乳输注组大鼠肝脏及肌肉中307位丝氨酸磷酸化的IRS-1分别为生理盐水输注组大鼠的3倍和3.8倍(P0.001),输注水杨酸钠,肝脏、肌肉307位丝氨酸磷酸化的IRS-1下降45%、20%(P0.05)。结论 FFA增高引起肝脏及肌肉中307位丝氨酸磷酸化的IRS-1水平增高,可能是导致胰岛素抵抗发生的机制之一,应用水杨酸钠,大鼠肝脏及肌肉组织中IRS-1丝氨酸磷酸化水平下降,胰岛素抵抗改善。抗炎药物水杨酸钠可能通过抑制FFA引起的IRS-1丝氨酸磷酸化,而发挥改善胰岛素抵抗的作用。  相似文献   

19.
The aim of the present study was to investigate whether the survival-improving effect of atorvastatin in sepsis is accompanied by a reduction in tissue activation of inflammatory pathways and, in parallel, an improvement in tissue insulin signaling in rats. Diffuse sepsis was induced by cecal ligation and puncture surgery (CLP) in male Wistar rats. Serum glucose and inflammatory cytokines levels were assessed 24 h after CLP. The effect of atorvastatin on survival of septic animals was investigated in parallel with insulin signaling and its modulators in liver, muscle and adipose tissue. Atorvastatin improves survival in septic rats and this improvement is accompanied by a marked improvement in insulin sensitivity, characterized by an increase in glucose disappearance rate during the insulin tolerance test. Sepsis induced an increase in the expression/activation of TLR4 and its downstream signaling JNK and IKK/NF-κB activation, and blunted insulin-induced insulin signaling in liver, muscle and adipose tissue; atorvastatin reversed all these alterations in parallel with a decrease in circulating levels of TNF-α and IL-6. In summary, this study demonstrates that atorvastatin treatment increased survival, with a significant effect upon insulin sensitivity, improving insulin signaling in peripheral tissues of rats during peritoneal-induced sepsis. The effect of atorvastatin on the suppression of the TLR-dependent inflammatory pathway may play a central role in regulation of insulin signaling and survival in sepsis insult.  相似文献   

20.
Liver injury and dysregulated glucose homoeostasis are common manifestations during sepsis. Although plenty of studies reported insulin could protect against multiple organ injuries caused by critical infections among patients, little was known about the precise mechanism. We investigated whether liver inflammatory pathway and central neuropeptides were involved in the process. In sepsis rats, hepatic IKK/NF‐κB pathway and STAT3 were strongly activated, along with reduced body weight, blood glucose and suppressed hepatic gluconeogenesis (GNG). Peripheral insulin administration efficiently attenuated liver dysfunction and glucose metabolic disorders by suppressing hypothalamic anorexigenic neuropeptide proopiomelanocortin (POMC) expression, hepatic NF‐κB pathway and STAT3 phosphorylation. Furthermore, knockdown of hypothalamic POMC significantly diminished protective effect of insulin on hepatic GNG and insulin‐induced STAT3 inactivation, but not inflammation or IKK/NF‐κB pathway. These results suggest that hepatic IKK/NF‐κB pathway mediates the anti‐inflammatory effect of insulin in septic rats, and peripheral insulin treatment may improve hepatic GNG by inhibiting STAT3 phosphorylation dependent on hypothalamic POMC expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号