首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We analyzed 29 T-DNA inserts in transgenicArabidopsis thaliana plants for the junction of the right border sequences and the flanking plant DNA. DNA sequencing showed that in most lines the right border sequences transferred had been preserved during integration, corroborating literature data. Surprisingly, in four independent transgenic lines a complete right border repeat was present followed by binary vector sequences. Cloning of two of these T-DNA inserts by plasmid rescue showed that in these lines the transferred DNA consisted of the complete binary vector sequences in addition to the T-region. On the basis of the structure of the transferred DNA we propose that in these lines T-DNA transfer started at the left-border repeat, continued through the vector part, passed the right border repeat, and ended only after reaching again this left-border repeat.  相似文献   

3.
4.
The commercially valuable transgenic papaya lines carrying the coat protein (CP) gene of Papaya ringspot virus (PRSV) and conferring virus resistance have been developed in Hawaii and Taiwan in the past decade. Prompt and sensitive protocols for transgene-specific and event-specific detections are essential for traceability of these lines to fulfill regulatory requirement in EU and some Asian countries. Here, based on polymerase chain reaction (PCR) approaches, we demonstrated different detection protocols for characterization of PRSV CP-transgenic papaya lines. Transgene-specific products were amplified using different specific primer pairs targeting the sequences of the promoter, the terminator, the selection marker, and the transgene, and the region across the promoter and transgene. Moreover, after cloning and sequencing the DNA fragments amplified by adaptor ligation-PCR, the junctions between plant genomic DNA and the T-DNA insert were elucidated. The event-specific method targeting the flanking sequences and the transgene was developed for identification of a specific transgenic line. The PCR patterns using primers designed from the left or the right flanking DNA sequence of the transgene insert in three selected transgenic papaya lines were specific and reproducible. Our results also verified that PRSV CP transgene is integrated into transgenic papaya genome in different loci. The copy number of inserted T-DNA was further confirmed by real-time PCR. The event-specific molecular markers developed in this investigation are crucial for regulatory requirement in some countries and intellectual protection. Also, these markers are helpful for prompt screening of a homozygote-transgenic progeny in the breeding program.  相似文献   

5.
A new promoter trap vector was constructed based on the juxtaposition of T-DNA right border to coding sequence of GUS. The new vector pRN-1 carried an intron in the GUS coding region. Promoter trap vectors pGKB5 and pRN-1 vectors were used to transform Arabidopsis ecotype Columbia using the floral dip transformation system. The transformants were selected on appropriate selection media and the primary transformants were confirmed by PCR using gene specific primers. Approximately 50 % of the T2 lines segregated for a 3:1 ratio indicating presence of T-DNA at single locus. Approximately 15% of the transformed lines showed expression of GUS. Morphological mutants for male sterility and dwarfism were also identified in the T2 population. A T-DNA tagged line was identified in T2 with GUS expression specifically in the floral parts. The number of T-DNA loci in this line was confirmed by Southern blot hybridization. T-DNA flanking region isolated from this line suggested insertions into chromosome 2 at two closely linked loci. The results demonstrate that the population generated can be used effectively to identify and characterize gene regulatory elements.  相似文献   

6.
About 25,000 rice T-DNA insertional mutant lines were generated using the vector pCAS04 which has both promoter-trapping and activation-tagging function. Southern blot analysis revealed that about 40% of these mutants were single copy integration and the average T-DNA insertion number was 2.28. By extensive phenotyping in the field, quite a number of agronomically important mutants were obtained. Histochemical GUS assay with 4,310 primary mutants revealed that the GUS-staining frequency was higher than that of the previous reports in various tissues and especially high in flowers. The T-DNA flanking sequences of some mutants were isolated and the T-DNA insertion sites were mapped to the rice genome. The flanking sequence analysis demonstrated the different integration pattern of the right border and left border into rice genome. Compared with Arabidopsis and poplar, it is much varied in the T-DNA border junctions in rice.  相似文献   

7.
The upstream sequence of pinb previously isolated from rice and confirmed to be a wound-inducible promoter by detecting GUS in T0 transgenic rice transformed via Agrobacterium tumefaciens-mediated procedures. In a transgenic line (pinb-16), the selectable marker hptII driven by CaMV35S promoter was completely silenced in T2 sublines; but the uidA gene driven by pinb promoter was expressed without being affected, though it, together with hptII, exists in the same T-DNA insertion. Analyses of methylation patterns using bisulphite-sequencing in the homozygous T1 and T2 sublines showed that cytosines in CaMV35S were gradually methylated in T1 plants and almost completely methylated in T2 plants. Interestingly, the process of methylation was accompanied by the occurrence of lesion mimic phenotype in rice leaves. The activity of hygromycin-resistance could be reestablished by treatment with 5-azacytidine. Genomic Southern and isolation of the T-DNA flanking sequences indicated that T-DNA was inserted in a retroelement of rice. These results revealed that methylation shows preference for the heterogeneity promoter fragment in the transgenic rice line and may be induced by the retroelement. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 2, pp. 266–273. The text was submitted by the authors in English.  相似文献   

8.
The genetic loci and phenotypic effects of the transgene Xa21, a bacterial blight (BB) resistance gene cloned from rice, were investigated in transgenic rice produced through an Agrobacterium-mediated transformation system. The flanking sequences of integrated T-DNAs were isolated from Xa21 transgenic rice lines using thermal asymmetric interlaced PCR. Based on the analysis of 24 T-DNA- Xa21 flanking sequences, T-DNA loci in rice could be classified into three types: the typical T-DNA integration with the definite left and right borders, the T-DNA integration linked with the adjacent vector backbone sequences and the T-DNA integration involved in a complicated recombination in the flanking sequences. The T-DNA integration in rice was similar to that in dicotyledonous genomes but was significantly different from the integration produced through direct DNA transformation approaches. All three types of integrated transgene Xa21 could be stably inherited and expressed the BB resistance through derived generations in their respective transgenic lines. The flanking sequences of the typical T-DNA integration consisted of actual rice genomic DNA and could be used as probes to locate the transgene on the rice genetic map. A total of 15 different rice T-DNA flanking sequences were identified. They displayed restriction fragment length polymorphisms (RFLPs) between two rice varieties, ZYQ8 and JX17, and were mapped on rice chromosomes 1, 3, 4, 5, 7, 9, 10, 11 and 12, respectively, by using a double haploid population derived from a cross between ZYQ8 and JX17. The blast search and homology comparison of the rice T-DNA flanking sequences with the rice chromosome-anchored sequence database confirmed the RFLP mapping results. On the basis of genetic mapping of the T-DNA- Xa21 loci, the BB resistance effects of the transgene Xa21 at different chromosome locations were investigated using homozygous transgenic lines with only one copy of the transgene. Among the transgenic lines, no obvious position effects of the transgene Xa21 were observed. In addition, the BB resistance levels of the Xa21 transgenic plants with different transgene copy numbers and on different genetic backgrounds were also investigated. It was observed that genetic background (or genome) effects were more obvious than dosage effects and position effects on the BB resistance level of the transgenic plants.  相似文献   

9.
During the process of crown gall tumorigenesis, Agrobacterium tumefaciens transfers part of the tumor-inducing (Ti) plasmid, the T-DNA, to a plant cell where it eventually becomes stably integrated into the plant genome. Directly repeated DNA sequences, called T-DNA borders, define the left and the right ends of the T-DNA. The T-DNA can be physically separated from the remainder of the Ti-plasmid, creating a 'binary vector' system; this system is frequently used to generate transgenic plants. Scientists initially thought that only those sequences located between T-DNA left and right borders transferred to the plant. More recently, however, several reports have appeared describing the integration of the non-T-DNA binary vector 'backbone' sequences into the genome of transgenic plants. In order to investigate this phenomenon, we constructed T-DNA binary vectors containing a nos-nptll gene within the T-DNA and a mas2'-gusA (β-glucuronidase) gene outside the T-DNA borders. We regenerated kanamycin-resistant transgenic tobacco plants and analyzed these plants for the expression of the vector-localized gusA gene and for the presence of binary vector backbone sequences. Approximately one-fifth of the plants expressed detectable GUS activity. PCR analysis indicated that approximately 75% of the plants contained the gusA gene. Southern blot analysis indicated that the vector backbone sequences could integrate into the tobacco genome linked either to the left or to the right T-DNA border. The vector backbone sequences could also integrate into the plant genome independently of (unlinked to) the T-DNA. Although we could readily detect T-strands containing the T-DNA within the bacterium, we could not detect T-strands containing only the vector backbone sequences or these vector sequences linked to the T-DNA.  相似文献   

10.
A minimal T-DNA binary vector was used for Agrobacterium-mediated transfer of a chimeric T4 lysozyme gene located next to the left border, and transgenic potato plants which expressed T4 lysozyme protein were identified and further analysed. Frequent rearrangements of T4 lysozyme transgenes were detected. A vector derivative containing two matrix associated regions (MARs) flanking its multiple cloning site was constructed. In transgenic potato plants, reduced variability in gene expression due to position effects was detected. When either the donor vector contained MAR sequences, or when vector pPCV701 which contains a pBR322 fragment next to the left border were used, only relatively few rearrangements were observed. However, when the T4 lysozyme gene was driven by a CaMV 35S promoter modified by multiplied enhancer region carrying either 2 or 4 elements, frequent rearrangements were again obtained.  相似文献   

11.
To investigate the various integration patterns of T-DNA generated by infection withAgrobacterium, we developed a vector (pRCV2) for the effective T-DNA tagging and applied it to tobacco (Nicotiana tabacum cv. Havana SR1). pRCV2 was constructed for isolating not only intact T-DNA inserts containing both side borders of T-DNA, but also for partial T-DNA inserts that comprise only the right or left side. We also designed PCR confirmation primer sets that can amplify in several important regions within pRCV2 to detect various unpredictable integration patterns. These can also be used for the direct inverse PCR. Leaf disks of tobacco were transformed withAgrobacterium tumefaciens LBA4404 harboring pRCV2. PCR and Southern analysis revealed the expected 584 bp product for thehpt gene as well as one of 600 bp for thegus gene in all transformants; one or two copies were identified for these integrated genes. Flanking plant genomic DNA sequences from the transgenic tobacco were obtained via plasmid rescue and then sequenced. Abnormal integration patterns in the tobacco genome were found in many transgenic lines. Of the 17 lines examined, 11 contained intact vector backbone; a somewhat larger deletion of the left T-DNA portion was encountered in 4 lines. Because nicking sites at the right border showed irregular patterns when the T-DNA was integrated, it was difficult to predict the junction regions between the vector and the flanking plant DNA.  相似文献   

12.
The integration and structure of a transgene locus can have profound effects on the level and stability of transgene expression. We screened 28 transgenic birch (Betula platyphylla Suk.) lines transformed with an insect-resistance gene (bgt) using Agrobacterium tumefaciens. Among the transgenic plants, the copy number of transgene varied from one to four. A rearrangement or partial deletion had occurred in the process of T-DNA integration. T-DNA repeat formation, detected by reverse primer PCR, was found among randomly screened transgenic lines. Sequencing of the junctions between the T-DNA inserts revealed deletions of 19–589 bp and an additional 45 bp filler DNA sequence was inserted between the T-DNA repeats at one junction. Micro-homologous sequences (1–6 bp) were observed in the junctions between the T-DNA inserts. Using SiteFinding-PCR, a relatively high percentage of AT value was found for the flanking regions. Deletion of the right border repeat was observed in 12/18 of the T-DNA/plant junctions analyzed. The number of nucleotides deleted varied from 3 to 712. Deletions of 17–89 bp were observed in all left T-DNA/plant junctions analyzed. A vector backbone DNA sequence in the transgene loci was also detected using primer pairs outside the left and right T-DNA borders. Approximately 89.3% of the lines contained some vector backbone DNA. These observations revealed that it is important to check the specificity of the integration. A mechanism of T-DNA transport and integration is proposed for this long-lived tree species.  相似文献   

13.
The stability of transgenes in the genome of transformed plants depends strongly on their correct physical integration into the host genome as well as on flanking target DNA sequences. For long-lived species like trees, however, no information is available so far concerning inactivation or loss of transgenes due to gene silencing or somatic genome rearrangement events. In this study, four independently transformed 35S-rolC transgenic hybrid aspen plants (Populus tremula L. × tremuloides Michx.), each harbouring one copy of the transgene, were investigated during continuous growth in the greenhouse. In one of these transgenic lines (Esch5:35S-rolC-##1) individuals frequently show phenotypic reversions, while in the remaining three lines (Esch5:35S-rolC-#3, -#5, -#16) the gene was essentially stable. Molecular analysis including PCR, Southern and Northern assays clearly showed that the transgene had been lost in the revertant tissue of the unstable line. Sequencing of T-DNA right and left borders, and flanking DNA regions, in all four transgenic aspen lines revealed no differences either in the type of flanking DNA (G-C to A-T ratio) or with respect to the presence of enhancers or MAR (matrix associated repeats)-like structures. Primers located within the left and right flanking regions in the three stable lines could be used to recover the target sites from the untransformed plants. This was not possible, however, with the unstable line, indicating that at least one flanking sequence does not derive from the plant target DNA but is of unknown origin. PCR using other primer pairs, and inverse PCR analysis, revealed an additional truncated T-DNA copy of 1050 nucleotides adjacent to the left border of the complete copy in this line. Sequencing of this truncated T-DNA revealed that it represented an inverted copy of part of the right half of the original construct. This special feature would allow the inverted repeat to pair with right border sequences of the complete copy. This would explain the frequently observed reversion resulting in transgene loss as due to intrachromosomal base-pairing leading to double-stranded loops of single-stranded DNA during mitotic cell divisions. Received: 9 June 1998 / Accepted: 6 October 1998  相似文献   

14.
Ac/Ds(GUS)结构介导的水稻启动子捕获系统的建立   总被引:5,自引:0,他引:5  
构建了基于Activator/Dissociation(β-glucuronidase)[简称Ac/Ds(GUS)]结构的捕获质粒p13B,用于分离水稻基因启动子.以此质粒用衣杆菌介导的方法转化粳稻品种中花11的胚性愈伤组织,对获得的18个独立转化株的T2代植株进行了抗除草剂筛选,从141个抗除草剂转基因植株中用PCR方法检测到其中37株是Ds因子发生了转座的植株,而且这种转座到新位置上的Ds因子是遗传的.初步观察到其中5株的GUS染色呈阳性.  相似文献   

15.
T-DNA insertional mutagenesis for activation tagging in rice   总被引:57,自引:0,他引:57  
Jeong DH  An S  Kang HG  Moon S  Han JJ  Park S  Lee HS  An K  An G 《Plant physiology》2002,130(4):1636-1644
  相似文献   

16.
Detailed molecular characterisation of transgene loci is a requirement for gaining regulatory approval for environmental release of genetically modified crops. In cereals, it is generally accepted that Agrobacterium-mediated transformation generates cleaner transgene loci with lower copy number and fewer rearrangements than those generated by biolistics. However, in wheat there has been little detailed analysis of T-DNA insertions at genetic and molecular level. Wheat lines transformed using Agrobacterium tumefaciens with bar and gusA (GUS) genes were subjected to genetic and molecular analysis. Unlike previous studies of transgene loci in wheat, we used functional assays for PAT and GUS proteins, combined with PCR and Southern analysis to detect the presence, copy number, linkage and transmission of two transgenes inserted in the same T-DNA. Thirty-four independent transgenic lines were categorised into three types: type I events (38% of total) where the gusA and bar genes displayed complete genetic linkage, segregating together as a single functional locus at the expected ratio of 3:1; type II events (18%), which possessed two or more transgene loci each containing gusA and bar; and type III events (44%), containing an incomplete T-DNA in which either the gusA or bar gene was lost. Most lines in this last category had lost the bar gene situated near the left T-DNA border. Southern analysis indicated that 30% of all lines possessed a single T-DNA copy containing gusA and bar. However, when data on expression and molecular analysis are combined, only 23% of all lines have single copy T-DNAs in which both gene cassettes are functioning. We also report on the presence of plasmid backbone DNA sequence in transgene loci detected using primer pairs outside the left and right T-DNA borders and within the plasmid selectable marker (NptI) gene. Approximately two thirds of the lines contained some vector backbone DNA, more frequently adjacent to the left border. Taken together, these data imply unstable left border function causing premature T-strand termination or read-through into vector backbone. As far as we are aware, this is the first report revealing near border T-DNA truncation and vector backbone integration in wheat transgenic lines produced by Agrobacterium-mediated transformation.  相似文献   

17.
Vectors for transformation of higher plants mediated by Agrobacterium tumefaciens were modified so that one, two or three additional copies of the left border (LB) sequences were inserted close to the original LB of the T-DNA. A gene for -glucuronidase (gusA) was placed outside the T-DNA to monitor the transfer to plants of 'vector backbone' sequences. The expression of GUS in immature embryos of rice that had been co-cultivated with A. tumefaciens carrying these constructs was around one tenth of that with A. tumefaciens carrying an unmodified control vector. Between 88 and 127 of independent transformants were regenerated from rice tissues infected with A. tumefaciens carrying each of these vectors. The GUS expressors among the rice transformed with the modified vectors were much less frequent than ones among the control transformants, and rate of reduction in the ratio of transgenic plants that expressed GUS was higher than 93%. Detection of a fragment across the LB region by the polymerase chain reaction and the gusA gene by Southern hybridization correlated well with GUS expression. These results indicate that transfer of the 'vector backbone' from the control vectors resulted mainly from inefficient termination of formation of the transfer intermediate of the T-DNA and additional LB sequences effectively suppressed such transfer. This approach is simpler than the strategy to place a 'lethal gene' outside the T-DNA and will likely help produce 'clean' transformants efficiently.  相似文献   

18.
Generation and flanking sequence analysis of a rice T-DNA tagged population   总被引:26,自引:0,他引:26  
Insertional mutagenesis provides a rapid way to clone a mutated gene. Transfer DNA (T-DNA) of Agrobacterium tumefaciens has been proven to be a successful tool for gene discovery in Arabidopsis and rice (Oryza sativa L. ssp. japonica). Here, we report the generation of 5,200 independent T-DNA tagged rice lines. The T-DNA insertion pattern in the rice genome was investigated, and an initial database was constructed based on T-DNA flanking sequences amplified from randomly selected T-DNA tagged rice lines using Thermal Asymmetric Interlaced PCR (TAIL-PCR). Of 361 T-DNA flanking sequences, 92 showed long T-DNA integration (T-DNA together with non-T-DNA). Another 55 sequences showed complex integration of T-DNA into the rice genome. Besides direct integration, filler sequences and microhomology (one to several nucleotides of homology) were observed between the T-DNA right border and other portions of the vector pCAMBIA1301 in transgenic rice. Preferential insertion of T-DNA into protein-coding regions of the rice genome was detected. Insertion sites mapped onto rice chromosomes were scattered in the genome. Some phenotypic mutants were observed in the T1 generation of the T-DNA tagged plants. Our mutant population will be useful for studying T-DNA integration patterns and for analyzing gene function in rice.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by D. Mackill  相似文献   

19.
20.
Using transfer DNA (T-DNA) with functions of gene trap and gene knockout and activation tagging, a mutant population containing 55,000 lines was generated. Approximately 81% of this population carries 1–2 T-DNA copies per line, and the retrotransposon Tos17 was mostly inactive in this population during tissue culture. A total of 11,992 flanking sequence tags (FSTs) have been obtained and assigned to the rice genome. T-DNA was preferentially (∼80%) integrated into genic regions. A total of 19,000 FSTs pooled from this and another T-DNA tagged population were analyzed and compared with 18,000 FSTs from a Tos17 tagged population. There was difference in preference for integrations into genic, coding, and flanking regions, as well as repetitive sequences and centromeric regions, between T-DNA and Tos17; however, T-DNA integration was more evenly distributed in the rice genome than Tos17. Our T-DNA contains an enhancer octamer next to the left border, expression of genes within genetics distances of 12.5 kb was enhanced. For example, the normal height of a severe dwarf mutant, with its gibberellin 2-oxidase (GA2ox) gene being activated by T-DNA, was restored upon GA treatment, indicating GA2ox was one of the key enzymes regulating the endogenous level of GA. Our T-DNA also contains a promoterless GUS gene next to the right border. GUS activity screening facilitated identification of genes responsive to various stresses and those regulated temporally and spatially in large scale with high frequency. Our mutant population offers a highly valuable resource for high throughput rice functional analyses using both forward and reverse genetic approaches. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users. Yue-Ie Hsing, Chyr-Guan Chern, and Ming-Jen Fan have contributed equally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号