首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism accounting for the development of castration-resistant prostate cancer (CRPC) remains unclear. Studies in CRPC tissues suggest that, after androgen deprivation therapy (ADT), the adrenal androgens may be an important source of testosterone (T) and 5-alpha dihydrotestosterone (DHT) in CRPC tissues. To clarify the role of adrenal androgens in the prostatic tissues (prostatic tissue adrenal androgens) during ADT, we developed a high sensitive and specific quantification method for the levels of androgens in prostatic tissue using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Human prostatic tissues were purified using mixed-mode reversed-phase, strong anion exchange Oasis cartridges (Oasis MAX). Analysis of steroids was performed using LC-MS/MS after picolinic acid derivatization. The validation tests showed that our method of quantitative analysis was precise and sensitive enough for the quantification of dehydroepiandrosterone (DHEA), androstenedione, androstenediol, T, and DHT in the prostatic tissue. The levels of adrenal androgens in prostate cancer tissues after ADT were similar to those in untreated PCa. Especially, DHEA was the most existing androgen precursor in PCa tissues after ADT. The levels of DHEA were high in PCa tissues, irrespective of ADT. We assumed that DHEA played a significant role in the synthesis of T and DHT in PCa tissues after ADT.  相似文献   

2.
A sensitive liquid chromatography-electrospray ionization-tandem mass spectrometric (LC-ESI-MS-MS) method for the quantification of 17alpha-hydroxyprogesterone (17OHP) in human saliva has been developed and validated. The saliva was deproteinized with acetonitrile, purified using a Strata-X cartridge, derivatized with a highly proton-affinitive reagent, 2-hydrazinopyridine, and subjected to LC-MS-MS. Quantification was based on the selected reaction monitoring, and deuterated 17OHP was used as the internal standard. This method allowed the reproducible and accurate quantification of the salivary 17OHP using a 200-mul sample, and the limit of quantitation was 5.0 pg/ml. The developed method was applied to clinical studies. A linear relationship was found to be positive (r(2)=0.975) between the blood 17OHP level and the salivary 17OHP level measured using the proposed method. The result from the salivary 17OHP measurement in patients with congenital adrenal hyperplasia demonstrated that the proposed method is very useful for monitoring of the therapeutic efficacy during hormone replacement therapy.  相似文献   

3.
A bioanalytical method for the analysis of oseltamivir (OP) and its metabolite oseltamivir carboxylate (OC) in human plasma, saliva and urine using off-line solid-phase extraction and liquid chromatography coupled to positive tandem mass spectroscopy has been developed and validated. OP and OC were analysed on a ZIC-HILIC column (50 mm x 2.1 mm) using a mobile phase gradient containing acetonitrile-ammonium acetate buffer (pH 3.5; 10mM) at a flow rate of 500 microL/min. The method was validated according to published FDA guidelines and showed excellent performance. The lower limit of quantification for OP was determined to be 1, 1 and 5 ng/mL for plasma, saliva and urine, respectively and for OC was 10, 10 and 30 ng/mL for plasma, saliva and urine, respectively. The upper limit of quantification for OP was determined to be 600, 300 and 1500 ng/mL for plasma, saliva and urine, respectively and for OC was 10,000, 10,000 and 30,000 ng/mL for plasma, saliva and urine, respectively. The within-day and between-day precisions expressed as R.S.D., were lower than 5% at all tested concentrations for all matrices and below 12% at the lower limit of quantification. Validation of over-curve samples ensured that it would be possible with dilution if samples went outside the calibration range. Matrix effects were thoroughly evaluated both graphically and quantitatively. No matrix effects were detected for OP or OC in plasma or saliva. Residues from the urine matrix (most likely salts) caused some ion suppression for both OP and its deuterated internal standard but had no effect on OC or its deuterated internal standard. The suppression did not affect the quantification of OP.  相似文献   

4.
Measurement of steroid levels in saliva has been proposed as a new laboratory tool for characterizing steroid metabolism, but it is not known whether the salivary levels of bile acids can be measured with accuracy and if so, whether such measurements provide information that is of clinical value. We developed and validated a sensitive and specific liquid chromatography–electrospray ionization-tandem mass spectrometric (LC–ESI-MS/MS) method for the quantification of chenodeoxycholic acid (CDCA) and glycochenodeoxycholic acid (GCDCA), representative primary non-amidated and glycine-conjugated bile acids, in whole saliva. We also examined whether the salivary bile acid concentrations were dependent on the saliva flow rate, because this is a very important aspect in a discussion of the utility of salivary diagnostics. Saliva was deproteinized with ethanol and purified using a Strata-X cartridge. Bile acids were converted to their hydrazide derivatives using 2-hydrazinopyridine, and subjected to LC–MS/MS. Quantification was based on selected reaction monitoring using characteristic transitions, and deuterated CDCA and GCDCA were used as internal standards. This method allowed the reproducible and accurate quantification of the salivary bile acids using a 200-μl sample and the limits of quantification for CDCA and GCDCA were 25 and 50 pg/ml, respectively. Using this method, the effect of increased saliva flow rate by gum-chewing on the salivary concentrations of CDCA and GCDCA was determined. The salivary level of GCDCA was significantly decreased by gum-chewing, whereas the concentration of CDCA remained constant. These results indicate that there is a good possibility that saliva may be a clinical tool for non-amidated bile acid testing.  相似文献   

5.
The aim of this study was to evaluate serum and saliva adrenocortical hormones and their relationships at rest and during submaximal exercise and recovery in 9 obese diabetic middle-aged men (BMI: 35.2 ± 1.6 kg/m (2)). Blood and saliva samples were taken at rest, every 10 min of a 30-min cycling exercise at 70% of maximal heart rate, and after 10 min of recovery in order to analyze cortisol, dehydroepiandrosterone sulfate (DHEA-S) and dehydroepiandrosterone (DHEA). Serum and saliva cortisol increased significantly during recovery (p<0.05), but no significant difference was observed between the rest, exercise, and recovery DHEA-S and DHEA concentrations. A strong correlation was found at rest between both serum and saliva cortisol (r=0.72, p<0.001) and DHEA-S and DHEA (r=0.93, p<0.001). Serum DHEA-S and saliva DHEA remained strongly correlated during and after the submaximal exercise (r=0.81, p<0.001), whereas a weaker but still significant relationship was observed between serum and saliva cortisol during and after the exercise (r=0.52, p<0.001). In conclusion, these results suggest that saliva adrenocortical hormones, and especially saliva DHEA, may offer a practical surrogate for serum concentrations during both rest and exercise in obese diabetic men.  相似文献   

6.
A liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) method for the determination of thyroxine (T4) in human saliva has been developed and validated. The saliva was deproteinized with methanol, purified using a Strata-X? cartridge, and subjected to LC/ESI-MS/MS. Quantification was based on selected reaction monitoring, and [13C6]-T4 was used as the internal standard. This method allowed the reproducible (intra- and inter-assay relative standard deviations, <4.8%) and accurate (analytical recovery, 96.5–99.6%) quantification of the salivary T4 using a 400 μl sample, and the limit of quantification was 25.0 pg/ml. A preliminary study using the developed method found that there is a diagnosable difference in the salivary T4 concentration between the euthyroid subjects and the patients with Graves disease.  相似文献   

7.
In the present study a sensitive method for the quantification of main free amino acids in saliva using capillary electrophoresis with laser induced fluorescence detection was developed. As background electrolyte 20 mM borate buffer pH 9.5 was used. Amino acids were separated after derivatization with fluorescein isothiocyanate (FITC) and the conditions for derivatization were optimized. The main amino acids occurring in saliva (Pro, Ser, Gly and Glu) were separated in less than 7 min. The parameters of validation such as linearity of response, precision and detection limits were determined. The detection limits were obtained in the range from 0.1 to 2.4 nM. The developed method was employed for determination of amino acids in real saliva samples.  相似文献   

8.
In the present study a sensitive method for the quantification of main free amino acids in saliva using capillary electrophoresis with laser induced fluorescence detection was developed. As background electrolyte 20 mM borate buffer pH 9.5 was used. Amino acids were separated after derivatization were optimized. The main amino acids occurring in saliva (Pro, Ser, Gly and Glu) were separated in less than 7 min. The parameters of validation such as linearity of response, precision and detection limits were determined. The detection limits were obtained in the range from 0.1 to 2.4 nM. The developed method was employed for determination of amino acids in real saliva samples.  相似文献   

9.
A selective and sensitive method for the determination of the HIV protease inhibitor saquinavir in human plasma, saliva, and urine using liquid-liquid extraction and LC-MS-MS has been developed, validated, and applied to samples of a healthy individual. After extraction with ethyl acetate, sample extracts were chromatographed isocratically within 5 min on Kromasil RP-18. The drug was detected with tandem mass spectrometry in the selected reaction monitoring mode using an electrospray ion source and 2H(5)-saquinavir as internal standard. The limit of quantification was 0.05 ng/mL. The accuracy of the method varied between -1 and +10% (SD within-batch) and the precision ranged from +4 to +10% (SD batch-to-batch). The method is linear at least within 0.05 and 87.6 ng/mL. After a regular oral dose (600 mg) saquinavir concentrations were detectable for 48 h in plasma and were well correlated with saliva concentrations (r(2)=0.9348, mean saliva/plasma ratio 1:15.1). The method is well suited for low saquinavir concentrations in different matrices.  相似文献   

10.
A sensitive liquid chromatography-electrospray ionization-tandem mass spectrometric (LC-ESI-MS-MS) method for the simultaneous determination of 5alpha-reduced pregnan-type neurosteroids, allopregnanolone (AP), epiallopregnanolone and 5alpha-dihydroprogesterone, in rat brain and serum has been developed and validated. The brain and serum steroids were extracted with methanol-acetic acid, purified using a Strata-X cartridge, derivatized with the permanently charged reagent, 2-hydrazino-1-methylpyridine (HMP), and subjected to LC-positive ESI-MS-MS. The limits of quantitation (LOQ) for brain (0.25 ng/g tissue) and serum (0.25 ng/ml) assays using the derivatization-ESI-MS-MS method are 60-150-fold lower than the LOQs for their atmospheric pressure chemical ionization-MS method without derivatization. [17Alpha,21,21,21-2H4]-AP was used as an internal standard. This method allowed the reproducible and accurate quantification of the brain or serum neurosteroids using a 20 mg or 20 microl sample, respectively. That is, the intra- and inter-assay coefficients of variation were below 8.2 and 6.0%, respectively, and the % accuracy values were 98.5-103.0% for all the steroids in both the brain and serum. The application of the developed method to the analysis of changes in the brain and serum neurosteroid levels by immobilization stress and ethanol administration is also presented.  相似文献   

11.
A derivatization reagent, 2-hydrazino-1-methylpyridine, was developed for the liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) of oxosteroids. The reagent quantitatively reacted with oxosteroids at 60 degrees C within 1h and the resulting derivatives of the mono-oxosteroids provided a 70-1600-fold higher sensitivity compared to intact steroids. However, HMP was unsuitable for di-oxosteroids, such as androstenedione and progesterone. The developed derivatization procedure was applied to the LC-ESI-MS analysis of 5alpha-dihydrotestosterone in human prostate, and allowed the reproducible quantification of nanogram/gram level of the androgen with a 10-mg sample.  相似文献   

12.
Dehydroepiandrosterone-fatty acyl esters (DHEA-FAE) are naturally occurring water-insoluble metabolites of DHEA, which are transported in plasma exclusively by lipoproteins. To find out whether DHEA, like estradiol, might be stored in adipose tissue in FAE form, we set up a mass spectrometric method to quantify DHEA-FAE and free DHEA in human adipose tissue and serum. The method consists of chromatographic purification steps and final determination of hydrolyzed DHEA-FAE and free DHEA, which was carried out by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our results showed that no detectable amounts of DHEA-FAE could be found in adipose tissue although 32-178 pmol/g of free DHEA were determined by GC-MS and LC-MS/MS. The DHEA-FAE concentrations in serum quantified by GC-MS were 1.4±0.7 pmol/ml in premenopausal women (n=7), and 0.9±0.4 pmol/ml in postmenopausal women (n=5). Correspondingly, the free DHEA concentrations were 15.2±6.3 pmol/ml and 6.8±3.0 pmol/ml. In addition, the mean proportions of DHEA-FAE of total DHEA (DHEA-FAE+free DHEA) in serum were 8.6% and 11.2% in pre- and postmenopausal women, respectively. Serum DHEA-FAE concentration was below quantification limit for LC-MS/MS (signal-to-noise ratio, S/N=10), while free DHEA concentrations varied between 5.8 and 23.2 pmol/ml. In conclusion, the proportion of DHEA-FAE of total DHEA in serum was approximately 9%. However, in contrast to our previous findings for estradiol fatty acid esters in adipose tissue which constituted about 80% of total estradiol (esterified+free), the proportion of DHEA-FAE of total DHEA was below 5%. Four to ten times higher concentrations of free DHEA were quantified in adipose tissue compared to those in serum.  相似文献   

13.
The metabolism of orally administered dehydroepiandrosterone (DHEA) by male and female golden Syrian hamsters was examined by quantification of DHEA and dehydroepiandrosterone sulfate (DHEAS) in gallbladder bile, urine and feces using high-performance liquid chromatography (HPLC). Plasma levels of DHEA and DHEAS were also determined by radioimmunoassay (RIA). After 5 days of oral DHEA administration (100 mg/kg body weight twice a day), RIA showed that plasma levels of DHEA and DHEAS were increased approximately 3-6 and 4-5 times, respectively, compared to controls. More than 95 % of circulating DHEA (S) in the peripheral blood was DHEAS. There was no significant sex difference in DHEAS plasma levels between male and female animals in the DHEA-supplemented group. However, 0.2 - 0.3 % of ingested DHEA was conjugated to DHEAS and excreted in urine by females, whereas less than 0.002 % was excreted in urine by males (p < 0.005). DHEAS was excreted in bile by males after DHEA supplementation, and the sex differences in DHEAS levels observed in bile were statistically significant (male, 18.7 +/- 7.5 vs. female, 5.6 +/- 3.1 micromol/l) (p < 0.005). Small amounts of ingested DHEA were excreted in an unchanged state in feces, and no sex difference was observed. These results suggest that there is a considerable sex difference in the conjugation and excretion of orally administered DHEA in the hamster.  相似文献   

14.
A rapid, accurate and reproducible assay utilising high performance liquid chromatography-mass spectrometry (LC-MS) has been developed and validated for determining testosterone concentrations in saliva and blow of bottlenose dolphins. Sample preparation used solid phase extraction with specific preconditioning of cartridges. Analytes were eluted with 100% acetonitrile, dried under nitrogen and stored at -80 degrees C. Samples were reconstituted in 60% acetonitrile for LC-MS analysis. Chromatographic separation was achieved with an Alltech Macrosphere C8 stainless steel analytical column (2.1 mm x 150 mm i.d., 5 microm particle size, 300 angstroms pore size) using a 55% mobile phase B isocratic method (mobile phase A = 0.5% acetic acid; mobile phase B = 0.5% acetic acid, 90% acetonitrile). Samples were analysed in SIM at m/z 289.20 (testosterone mw 288.40) and a positive ion ESI. The limit of quantification was 0.5 ng/ml with a limit of detection of 0.2 ng/ml. The concentration curve was linear from 0.5 to 50 ng/ml (y = 0.01x + 0.0045, r(2) = 0.959, r = 0.979, p < 0.001). The R.S.D.s of intra- and inter-batch precision were less than 15% for saliva and 11% blow. Recovery of the assay for saliva was 93.0 +/- 7.9% (50 ng/ml) and 91.5 +/- 3.72% (1 ng/ml), and for blow was 83.3 +/- 6.8% (50 ng/ml) and 85.8 +/- 4.6% (1 ng/ml). Recovery of the internal standard in saliva was 73.0 +/- 14.2% and in blow was 78.63 +/- 4.29. The described assay was used to determine the presence of endogenous testosterone in saliva (9.73-23 ng/ml, n = 10) and blow (14.71-86.20 ng/ml, n = 11) samples of captive bottlenose dolphins.  相似文献   

15.
A reversed-phase (RP) high-performance liquid chromatographic (HPLC) method with fluorescence detection allowing the sensitive and specific quantification of BAY 12-8039, a new antimicrobially active 8-methoxyquinolone, in biological fluids is described. The method is compared to a microbiological assay (bioassay) based on B. subtilis test strain with a limit of quantification of approximately 60 μg/l. Following dilution and centrifugation, plasma, saliva or urine supernatant is directly injected onto the HPLC system. Concentrations down to a limit of quantification of 2.5 μg/l can be quantified in plasma, saliva and urine. Data on recovery, accuracy and precision of the method throughout the whole working range as well as results on stability of the analyte are presented. The concentration data are correlated with results from the bioassay. BAY 12-8039 is stable in plasma after repeated freeze-thaw cycles and following storage at −20°C for at least 12 months. The results of HPLC measurements excellently agree with bioassay data indicating the relevance of the method as a tool in clinical development to answer pharmacokinetic questions related to antimicrobial activity. The method was applied to human plasma, saliva and urine from subjects after a single oral dose of 400 mg of BAY 12-8039.  相似文献   

16.
We report a highly sensitive enzyme immunoassay for dehydroepiandrosterone (DHEA) and its sulfate (DHEA-S) using horseradish peroxidase as the label enzyme. Separation of free and bound DHEA-peroxidase conjugate was by insolubilized antibody, prepared by coupling purified IgG of goat anti-rabbit IgG serum with Sepharose 4B or a polystyrene tube. The enzyme activity was measured by the chemiluminescence reaction using luminol and hydrogen peroxide as substrate. The faint chemiluminescence was measured by a photon counter. The sensitivity was 25 pg/assay tube for DHEA and 100 pg/assay tube for DHEA-S. Upon comparison, results obtained by radioimmunoassay and this method showed good agreement; r = 0.86 for free DHEA, r = 0.92 for acid-hydrolyzed DHEA-S and r = 0.91 for solvolyzed DHEA-S. The present method is applicable in the routine determination of DHEA and DHEA-S in biological fluid.  相似文献   

17.
Risperidone is currently one of the most frequently prescribed atypical antipsychotic drugs; its main active metabolite 9-hydroxyrisperidone contributes significantly to the therapeutic effects observed. An original analytical method is presented for the simultaneous analysis of risperidone and the metabolite in plasma, urine and saliva by high-performance liquid chromatography coupled to an original sample pre-treatment procedure based on micro-extraction by packed sorbent (MEPS). The assays were carried out using a C8 reversed-phase column and a mobile phase composed of 73% (v/v) acidic phosphate buffer (30 mM, pH 3.0) containing 0.23% triethylamine and 27% (v/v) acetonitrile. The UV detector was set at 238 nm and diphenhydramine was used as the internal standard. The sample pre-treatment by MEPS was carried out on a C8 sorbent. The extraction yields values were higher than 92% for risperidone and 90% for 9-hydroxyrisperidone, with RSD for precision always lower than 7.9% for both analytes. Limit of quantification values in the different matrices were 4 ng/mL or lower for risperidone and 6 ng/mL or lower for the metabolite. The method was successfully applied to plasma, urine and saliva samples from psychotic patients undergoing therapy with risperidone, with satisfactory accuracy results (recovery>89%) and no interference from other drugs. Thus, the method seems to be suitable for the therapeutic drug monitoring of schizophrenic patients using the three different biological matrices plasma, urine and saliva.  相似文献   

18.
BackgroundAn effective, green and rapid analytical strategy namely the simultaneous spray assisted droplet formation-liquid phase microextraction (S-SADF-LPME) method was developed for the determination of trace quantity of cadmium in saliva samples by using the slotted quartz tube-flame atomic absorption spectrophotometry (SQT-FAAS). By the developed method, external dispersive solvent usage for droplet formation was reduced to obtain a more environmental-friendly method.MethodsMethod consists of a simultaneous complexing and extraction step, which was based on spraying an extraction solvent containing a solid ligand into the aqueous sample solution, forming fine droplets without the use of dispersive solvent. The procedure was implemented using a customized, cost effective and portable spray apparatus to minimize the consumption of reagent, analysis time and operation steps. Thus, this methodology ensures better repeatability and accuracy while minimizing the relative errors caused by the experimental steps. Parameters including the buffer amount, extractant/ligand concentration, extraction solvent type, extraction/ligand solution volume, spraying number and vortex period were systemically optimized to lower the detection limit.ResultsUnder the optimal extraction conditions, 96.9-folds enhancement in the detection power of the traditional FAAS was achieved. The limit of detection and limit of quantification values of presented method were calculated to be 0.65 and 2.17 ng mL−1, respectively. Accuracy and applicability of the optimized method was investigated by collecting saliva samples from smokers. Satisfactory percent recovery values wereachieved for cadmium with a low standard deviation in the acceptable range of 84.9–109.6 %.ConclusionThe developed dispersive solvent-free S-SADF-LPME technique presents a fast, simple, cost-effective and eco-friendly microextraction method based on the use of an easily accessible and functional spray apparatus.  相似文献   

19.
A sensitive enantioselective liquid chromatographic assay with mass spectrometric detection (LC-MS) has been developed and validated for the simultaneous determination of saliva concentrations of (R)- and (S)-methadone (Met) and (R)- and (S)-2-ethylidene-1,5-dimethyl-3,3-diphenyl-pyrrolidine (EDDP, a primary metabolite of Met). Saliva specimens were collected using Salivette devices (Sarsedt), and centrifuged; collected saliva was then spiked with deuterated internal standards, D3-Met and D3-EDDP, and directly injected into the LC-MS. Enantioselective separations were achieved on a liquid chromatographic chiral stationary phase (CSP) based upon immobilized alpha(1)-acid glycoprotein (AGP) using a mobile phase composed of acetonitrile: ammonium acetate buffer (10mM, pH 7.0) in a ratio of 18:82 (v/v), a flow rate of 0.9 ml/min and a temperature of 25 degrees C. Under these conditions, enantioselective separations were observed for methadone (alpha=1.30) and EDDP (alpha=1.17) within 15 min. Met, EDDP, D3-Met and D3-EDDP were detected using selected ion monitoring at m/z 310.20, 278.20, 313.20 and 281.20, respectively. Linear relationships between peak height ratio and drug-enantiomer concentrations were obtained for methadone in the range of 5.0-600.0 ng/ml, and for EDDP from 0.5 to 15.0 ng/ml per enantiomer with correlation coefficients better than 0.9994, where lower limit of quantification (LLOQ) for Met was 5 ng/ml and for EDDP 0.5 ng/ml. Acceptable intra- and inter-day precision of the method (CVs<4.0%) and accuracy (CVs<4.0%) were obtained. These findings demonstrate the accuracy and precision of the method used to successfully analyze saliva obtained from patients enrolled in a methadone-maintenance program.  相似文献   

20.
The review considers the roles cortisol (Crt), dehydroepiandrosterone (DHEA), and DHEA sulfate (DHEA-S) play in the stress response. Age-related, sex-related, and circadian fluctuations in normal conditions and in acute or chronic stress are described for Crt, DHEA, and DHEA-S. The main techniques used to estimate the Crt level in the blood, urine, and saliva are described, and approaches to the interpretation of the results discussed. Special attention is paid to Crt assays in anthropological and psychological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号