首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Specific interactions between alpha-helical transmembrane segments are important for folding and/or oligomerization of membrane proteins. Previously, we have shown that most transmembrane helix-helix interfaces of a set of crystallized membrane proteins are structurally equivalent to soluble leucine zipper interaction domains. To establish a simplified model of these membrane-spanning leucine zippers, we studied the homophilic interactions of artificial transmembrane segments using different experimental approaches. Importantly, an oligoleucine, but not an oligoalanine, se- quence efficiently self-assembled in membranes as well as in detergent solution. Self-assembly was maintained when a leucine zipper type of heptad motif consisting of leucine residues was grafted onto an alanine host sequence. Analysis of point mutants or of a random sequence confirmed that the heptad motif of leucines mediates self-recognition of our artificial transmembrane segments. Further, a data base search identified degenerate versions of this leucine motif within transmembrane segments of a variety of functionally different proteins. For several of these natural transmembrane segments, self-interaction was experimentally verified. These results support various lines of previously reported evidence where these transmembrane segments were implicated in the oligomeric assembly of the corresponding proteins.  相似文献   

2.
SNARE proteins are essential for different types of intracellular membrane fusion. Whereas interaction between their cytoplasmic domains is held responsible for establishing membrane proximity, the role of the transmembrane segments in the fusion process is currently not clear. Here, we used an in vitro approach based on lipid mixing and electron microscopy to examine a potential fusogenic activity of the transmembrane segments. We show that the presence of synthetic peptides representing the transmembrane segments of the presynaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) synaptobrevin II (also referred to as VAMP II) or syntaxin 1A, but not of an unrelated control peptide, in liposomal membranes drives their fusion. Liposome aggregation by millimolar Ca(2+) concentrations strongly potentiated the effect of the peptides; this indicates that juxtaposition of the bilayers favours their fusion in the absence of the cytoplasmic SNARE domains. Peptide-driven fusion is reminiscent of natural membrane fusion, since it was suppressed by lysolipid and involved both bilayer leaflets. This suggests transient presence of a hemifusion intermediate followed by complete membrane merger. Structural studies of the peptides in lipid bilayers performed by Fourier transform infrared spectroscopy indicated mixtures of alpha-helical and beta-sheet conformations. In isotropic solution, circular dichroism spectroscopy showed the peptides to exist in a concentration-dependent equilibrium of alpha-helical and beta-sheet structures. Interestingly, the fusogenic activity decreased with increasing stability of the alpha-helical solution structure for a panel of variant peptides. Thus, structural plasticity of transmembrane segments may be important for SNARE protein function at a late step in membrane fusion.  相似文献   

3.
Although progress has been made in understanding the thermodynamic stability of water-soluble proteins, our understanding of the folding of membrane proteins is at a relatively primitive level. A major obstacle to understanding the folding of membrane proteins is the discovery of systems in which the folding is in thermodynamic equilibrium, and the development of methods to quantitatively assess this equilibrium in micelles and bilayers. Here, we describe the application of disulfide cross-linking to quantitatively measure the thermodynamics of membrane protein association in detergent micelles. The method involves initiating disulfide cross-linking of a protein under reversible redox conditions in a thiol-disulfide buffer and quantitative assessment of the extent of cross-linking at equilibrium. The 19-46 alpha-helical transmembrane segment of the M2 protein from the influenza A virus was used as a model membrane protein system for this study. Previously it has been shown that transmembrane peptides from this protein specifically self-assemble into tetramers that retain the ability to bind to the drug amantadine. We used thiol-disulfide exchange to quantitatively measure the tetramerization equilibrium of this transmembrane protein in dodecylphosphocholine (DPC) detergent micelles. The association constants obtained agree remarkably well with those derived from analytical ultracentrifugation studies. The experimental method established herein should provide a broadly applicable tool for thermodynamic studies of folding, oligomerization and protein-protein interactions of membrane proteins.  相似文献   

4.
Given the known high-resolution structures of alpha-helical transmembrane domains, we show that there are statistically distinct classes of transmembrane interfaces which relate to the folding and oligomerization of transmembrane domains. Distinct types of interfaces have been categorized and refer to those between: the same polypeptide chain, different polypeptide chains, helices that are sequential neighbors, and those that are nonsequential. These different interfaces may reflect different phases in the mechanism of transmembrane domain folding and are consistent with the current experimental evidence pertaining to the folding and oligomerization of transmembrane domains. The classes of helix-helix interfaces have been identified in terms of the numbers and different types of pairwise amino acid interactions. The specific measures used are interaction entropy, the information content of interacting partners compared to a random set of contacts, the amino acid composition of the classes and the abundances of specific amino acid pairs in close contact. Knowledge of the clear differences in the types of helix-helix contacts helps with the derivation of knowledge-based constraints which until now have focused on only the interiors of transmembrane domains as compared to the exterior. Taken together, an in vivo model for membrane protein folding is presented, which is distinct from the familiar two-stage model. The model takes into account the different interfaces of membrane helices defined herein, and the available data regarding folding in the translocation channel.  相似文献   

5.
6.
Spontaneous membrane insertion and folding of beta-barrel membrane proteins from an unfolded state into lipid bilayers has been shown previously only for few outer membrane proteins of Gram-negative bacteria. Here we investigated membrane insertion and folding of a human membrane protein, the isoform 1 of the voltage-dependent anion-selective channel (hVDAC1) of mitochondrial outer membranes. Two classes of transmembrane proteins with either alpha-helical or beta-barrel membrane domains are known from the solved high-resolution structures. VDAC forms a transmembrane beta-barrel with an additional N-terminal alpha-helix. We demonstrate that similar to bacterial OmpA, urea-unfolded hVDAC1 spontaneously inserts and folds into lipid bilayers upon denaturant dilution in the absence of folding assistants or energy sources like ATP. Recordings of the voltage-dependence of the single channel conductance confirmed folding of hVDAC1 to its active form. hVDAC1 developed first beta-sheet secondary structure in aqueous solution, while the alpha-helical structure was formed in the presence of lipid or detergent. In stark contrast to bacterial beta-barrel membrane proteins, hVDAC1 formed different structures in detergent micelles and phospholipid bilayers, with higher content of beta-sheet and lower content of alpha-helix when inserted and folded into lipid bilayers. Experiments with mixtures of lipid and detergent indicated that the content of beta-sheet secondary structure in hVDAC1 decreased at increased detergent content. Unlike bacterial beta-barrel membrane proteins, hVDAC1 was not stable even in mild detergents such as LDAO or dodecylmaltoside. Spontaneous folding of outer membrane proteins into lipid bilayers indicates that in cells, the main purpose of membrane-inserted or associated assembly factors may be to select and target beta-barrel membrane proteins towards the outer membrane instead of actively assembling them under consumption of energy as described for the translocons of cytoplasmic membranes.  相似文献   

7.
Oxenoid K  Sönnichsen FD  Sanders CR 《Biochemistry》2002,41(42):12876-12882
Prokaryotic diacylglycerol kinase (DAGK) functions as a homotrimer of 13 kDa subunits, each of which has three transmembrane segments. This enzyme is conditionally essential to some bacteria and serves as a model system for studies of membrane protein biocatalysis, stability, folding, and misfolding. In this work, the detailed topology and secondary structure of DAGK's N-terminus up through the loop following the first transmembrane domain were probed by NMR spectroscopy. Secondary structure was mapped by measuring 13C NMR chemical shifts. Residue-to-residue topology was probed by measuring 19F NMR relaxation rates for site-specifically labeled samples in the presence and absence of polar and hydrophobic paramagnetic probes. Most of DAGK's N-terminal cytoplasmic and first transmembrane segments are alpha-helical. The first and second transmembrane helices are separated by a short loop from residues 48 to 52. The first transmembrane segment extends from residues 32 to 48. Most of the N-terminal cytoplasmic domain lies near the interface but does not extend deeply into the membrane. Finally, catalytic activities measured for the single cysteine mutants before and after chemical labeling suggest that the N-terminal cytoplasmic domain likely contains a number of critical active site residues. The results, therefore, suggest that DAGK's active site lies very near to the water/bilayer interface.  相似文献   

8.
To define the structural basis for cofactor binding to membrane proteins, we introduce a manageable model system, which allows us, for the first time, to study the influence of individual transmembrane helices and of single amino acid residues on the assembly of a transmembrane cytochrome. In vivo as well as in vitro analyses indicate central roles of single amino acid residues for either interaction of the transmembrane helices or for binding of the cofactor. The results clearly show that interaction of the PsbF transmembrane helix is independent from binding of the heme cofactor. On the other hand, binding of the cofactor highly depends on helix-helix interactions. By site-directed mutagenesis critical amino acid residues were identified, which are involved in the assembly of a functional transmembrane cytochrome. Especially, a highly conserved glycine residue is critical for interaction of the transmembrane helices and assembly of the cytochrome. Based on the two-stage-model of alpha-helical membrane protein folding, the presented results clearly indicate a third stage of membrane protein folding, in which a cofactor binds to a pre-assembled transmembrane protein.  相似文献   

9.
Structural studies of full-length membrane proteins have been hindered by their hydrophobicity and low expression in a variety of systems. However, a simplifying aspect of membrane protein folding is that individual transmembrane segments or membrane protein fragments have been observed to represent independent folding domains, and as such, can facilitate the study of packing interactions between TM helices, and the collection of structural information regarding membrane proteins. This review focuses on two categories of techniques--total peptide synthesis and bacterial expression--that can each be optimized for preparation of transmembrane protein segments. First, synthesis of hydrophobic transmembrane peptides that are N- and/or C-tagged with solubilizing residues such as lysine can improve manipulation of the transmembrane core in a variety of biophysical experiments. In this context, we describe general protocol considerations during the synthesis, cleavage, and purification stages of these peptides to identify appropriate parameters that combine to improve yields of hydrophobic peptides. Second, bacterial expression of membrane protein fragments is a useful tool for producing large quantities of hydrophobic protein segments. Targeting protein expression within Escherichia coli can facilitate purification, while attaching the hydrophobic construct to a hydrophilic fusion protein can amplify expression. We show that adapting protein constructs to comply with expression host specifications, in concert with thorough exploration of expression conditions such as the type of media used for expression, temperature, and cell strain, can significantly improve protein yields.  相似文献   

10.
The folding mechanism of integral membrane proteins has eluded detailed study, largely as a result of the inherent difficulties in folding these proteins in vitro. The seven-transmembrane helical protein bacteriorhodopsin has, however, allowed major advances to be made, not just on the folding of this particular protein, but also on the factors governing folding of transmembrane alpha-helical proteins in general. This review focusses on kinetic and equilibrium studies of bacteriorhodopsin folding in vitro. It covers what is currently known about secondary and tertiary structure formation as well as the events accompanying retinal binding, for protein in detergent and lipid systems, including native membrane samples.  相似文献   

11.
The physical mechanisms that govern the folding and assembly of integral membrane proteins are poorly understood. It appears that certain properties of the lipid bilayer affect membrane protein folding in vitro, either by modulating helix insertion or packing. In order to begin to understand the origin of this effect, we investigate the effect of lipid forces on the insertion of a transmembrane alpha-helix using a water-soluble, alanine-based peptide, KKAAAIAAAAAIAAWAAIAAAKKKK-amide. This peptide binds to preformed 1,2-dioleoyl-l-alpha-phosphatidylcholine (DOPC) vesicles at neutral pH, but spontaneous transmembrane helix insertion directly from the aqueous phase only occurs at high pH when the Lys residues are de-protonated. These results suggest that the translocation of charge is a major determinant of the activation energy for insertion. Time-resolved measurements of the insertion process at high pH indicate biphasic kinetics with time constants of ca 30 and 430 seconds. The slower phase seems to correlate with formation of a predominantly transmembrane alpha-helical conformation, as determined from the transfer of the tryptophan residue to the hydrocarbon region of the membrane. Temperature-dependent measurements showed that insertion can proceed only above a certain threshold temperature and that the Arrhenius activation energy is of the order of 90 kJ mol(-1). The kinetics, threshold temperature and the activation energy change with the mole fraction of 1,2-dioleoyl-l-alpha-phosphatidylethanolamine (DOPE) introduced into the DOPC membrane. The activation energy increases with increasing DOPE content, which could reflect the fact that this lipid drives the bilayer towards a non-bilayer transition and increases the lateral pressure in the lipid chain region. This suggests that folding events involving the insertion of helical segments across the bilayer can be controlled by lipid forces.  相似文献   

12.
We report a detailed kinetic study of the folding of an alpha-helical membrane protein in a lipid bilayer environment. SDS denatured bacteriorhodopsin was folded directly into phosphatidylcholine lipid vesicles by stopped-flow mixing. The folding kinetics were monitored with millisecond time resolution by time-resolving changes in protein fluorescence as well as in the absorption of the retinal chromophore. The kinetics were similar to those previously reported for folding bacteriorhodopsin in detergent or lipid micelles, except for the presence of an additional apoprotein intermediate. We suggest this intermediate is a result of the greater internal two-dimensional pressure present in these lipid vesicles as compared to micelles. These results lay the groundwork for future studies aimed at understanding the mechanistic origin of the effect of lipid bilayer properties on protein folding. Furthermore, the use of biologically relevant phosphatidylcholine lipids, together with a straightforward rapid mixing process to initiate the folding reaction, means the method is generally applicable, and thus paves the way for an improved understanding of the in vitro folding of transmembrane alpha-helical proteins.  相似文献   

13.
Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices—implying a dynamic relationship between membrane proteins and their environment.  相似文献   

14.
Research into the folding mechanisms of integral membrane proteins lags far behind that of water-soluble proteins, to the extent that the term protein folding is synonymous with water-soluble proteins. Hydrophobic membrane proteins, and particularly those with transmembrane alpha-helical motifs, are frequently considered too difficult to work with. We show that the stored curvature elastic stress of lipid bilayers can be used to guide the design of efficient folding systems for these integral membrane proteins. The curvature elastic stress of synthetic phosphatidylcholine/phosphatidylethanolamine lipid bilayers can be used to control both the rate of folding and the yield of folded protein. The use of a physical bilayer property generalises this approach beyond the particular chemistry of the lipids involved.  相似文献   

15.
Membrane protein folding and oligomerization: the two-stage model.   总被引:27,自引:0,他引:27  
J L Popot  D M Engelman 《Biochemistry》1990,29(17):4031-4037
We discuss the view that the folding of many, perhaps most, integral membrane proteins can be considered as a two-stage process. In stage I, hydrophobic alpha-helices are established across the lipid bilayer. In stage II, they interact to form functional transmembrane structures. This model is suggested by the nature of transmembrane segments in known structures, refolding experiments, the assembly of integral membrane protein from fragments, and the existence of very small integral membrane protein subunits. It may extend to proteins with a variety of functions, including the formation of transmembrane aqueous channels. The model is discussed in the context of the forces involved in membrane protein folding and the interpretation of sequence data.  相似文献   

16.
Structural analysis of peptide fragments has provided useful information on the secondary structure of integral membrane proteins built from a helical bundle (up to seven transmembrane segments). Comparison of those results to recent X-ray crystallographic results showed agreement between the structures of the fragments and the structures of the intact proteins. Lactose permease of Escherichia coli (lac Y) offers an opportunity to test that hypothesis on a substantially larger integral membrane protein. Lac Y contains a bundle of 12 transmembrane segments connected by 11 loops. Eleven segments, each corresponding to one of the loops in this protein, were studied. Five of these segments form defined structures in solution as determined by multidimensional nuclear magnetic resonance. Four peptides form turns, and one peptide reveals the end of one of the transmembrane helices. These results suggest that some loops in helical bundles are stabilized by short-range interactions, particularly in smaller bundles, and such intrinsically stable loops may contribute to protein stability and influence the pathway of folding. Greater conformational flexibility may be found in large integral membrane proteins.  相似文献   

17.
Modeling of integral membrane proteins and the prediction of their functional sites requires the identification of transmembrane (TM) segments and the determination of their angular orientations. Hydrophobicity scales predict accurately the location of TM helices, but are less accurate in computing angular disposition. Estimating lipid-exposure propensities of the residues from statistics of solved membrane protein structures has the disadvantage of relying on relatively few proteins. As an alternative, we propose here a scale of knowledge-based Propensities for Residue Orientation in Transmembrane segments (kPROT), derived from the analysis of more than 5000 non-redundant protein sequences. We assume that residues that tend to be exposed to the membrane are more frequent in TM segments of single-span proteins, while residues that prefer to be buried in the transmembrane bundle interior are present mainly in multi-span TMs. The kPROT value for each residue is thus defined as the logarithm of the ratio of its proportions in single and multiple TM spans. The scale is refined further by defining it for three discrete sections of the TM segment; namely, extracellular, central, and intracellular. The capacity of the kPROT scale to predict angular helical orientation was compared to that of alternative methods in a benchmark test, using a diversity of multi-span alpha-helical transmembrane proteins with a solved 3D structure. kPROT yielded an average angular error of 41 degrees, significantly lower than that of alternative scales (62 degrees -68 degrees ). The new scale thus provides a useful general tool for modeling and prediction of functional residues in membrane proteins. A WWW server (http://bioinfo.weizmann.ac.il/kPROT) is available for automatic helix orientation prediction with kPROT.  相似文献   

18.
Membrane topology of Escherichia coli diacylglycerol kinase.   总被引:1,自引:1,他引:0       下载免费PDF全文
The topology of Escherichia coli diacylglycerol kinase (DAGK) within the cytoplasmic membrane was elucidated by a combined approach involving both multiple aligned sequence analysis and fusion protein experiments. Hydropathy plots of the five prokaryotic DAGK sequences available were uniform in their prediction of three transmembrane segments. The hydropathy predictions were experimentally tested genetically by fusing C-terminal deletion derivatives of DAGK to beta-lactamase and beta-galactosidase. Following expression, the enzymatic activities of the chimeric proteins were measured and used to determine the cellular location of the fusion junction. These studies confirmed the hydropathy predictions for DAGK with respect to the number and approximate sequence locations of the transmembrane segments. Further analysis of the aligned DAGK sequences detected probable alpha-helical N-terminal capping motifs and two amphipathic alpha-helices within the enzyme. The combined fusion and sequence data indicate that DAGK is a polytopic integral membrane protein with three transmembrane segments with the N terminus of the protein in the cytoplasm, the C terminus in the periplasmic space, and two amphipathic helices near the cytoplasmic surface.  相似文献   

19.
Melnyk RA  Partridge AW  Deber CM 《Biochemistry》2001,40(37):11106-11113
Biophysical study of the transmembrane (TM) domains of integral membrane proteins has traditionally been impeded by their hydrophobic nature. As a result, an understanding of the details of protein-protein interactions within membranes is often lacking. We have demonstrated previously that model TM segments with flanking cationic residues spontaneously fold into alpha-helices upon insertion into membrane-mimetic environments. Here, we extend these studies to investigate whether such constructs consisting of TM helices from biological systems retain their native secondary structures and oligomeric states. Single-spanning TM domains from the epidermal growth factor receptor (EGFR), glycophorin A (GPA), and the influenza A virus M2 ion channel (M2) were designed and synthesized with three to four lysine residues at both N- and C-termini. Each construct was shown to adopt an alpha-helical conformation upon insertion into sodium dodecyl sulfate micelles. Furthermore, micelle-inserted TM segments associated on SDS-PAGE gels according to their respective native-like oligomeric states: EGFR was monomeric, GPA was dimeric, and M2 was tetrameric. This approach was then used to investigate whether one or both of the TM segments (Tar-1 and Tar-2) from the Escherichia coli aspartate receptor were responsible for its homodimeric nature. Our results showed that Tar-1 formed SDS-resistant homodimers, while Tar-2 was monomeric. Furthermore, no heterooligomerization between Tar-1 and Tar-2 was detected, implicating the Tar-1 helix as the oligomeric determinant for the Tar protein. The overall results indicate that this approach can be used to elucidate the details of TM domain folding for both single-spanning and multispanning membrane proteins.  相似文献   

20.
Proline kinks in transmembrane alpha-helices   总被引:15,自引:0,他引:15  
Integral membrane proteins often contain proline residues in their presumably alpha-helical transmembrane segments. This is in marked contrast to globular proteins, where proline is rarely found inside alpha-helices. Proline residues cause kinks in helices, and, in addition to leaving the i-4 backbone carbonyl without its normal hydrogen bond donor, also sterically prevent the (i-3)-carbonyl-(i + l)-amide backbone hydrogen bond from forming. Here, some structural aspects of proline kinks in transmembrane helices are discussed on the basis of an analysis of Pro-kinked helices in the photosynthetic reaction center and bacteriorhodopsin, as well as results from an analysis of Pro-containing transmembrane segments identified in the NBRF Protein Sequence Databank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号