首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxin A (TcdA) and Toxin B (TcdB) are the major pathogenicity factors of the Clostridium difficile-associated diarrhoea (CDAD). The single-chained protein toxins enter their target cells by receptor-mediated endocytosis. New data show the critical role of auto-catalytic processing for target cell entry. Inside the cell, the toxins mono-glucosylate and thereby inactivate low molecular mass GTP-binding proteins of the Rho subfamily. Toxin-treated cells respond to RhoA glucosylation with up-regulation and activation of the pro-apoptotic Rho family protein RhoB. These data reinforce the critical role of the glucosyltransferase activity for programmed cell death and show that TcdA and TcdB, generally classified as broad-spectrum inhibitors of Rho proteins, are also capable of activating Rho proteins.  相似文献   

2.
Toxin A (TcdA) and toxin B (TcdB) are the major virulence factors of Clostridium difficile-associated diarrhoea (CDAD). TcdA and TcdB mono-glucosylate small GTPases of the Rho family, thereby causing actin re-organisation in colonocytes, resulting in the loss of colonic barrier function. The hydrophilic bile acid tauroursodeoxycholic acid (TUDCA) is an approved drug for the treatment of cholestasis and biliary cirrhosis. In this study, TUDCA-induced activation of Akt1 is presented to increase cellular levels of pS71-Rac1/Cdc42 in human hepatocarcinoma (HepG2) cells, showing for the first time that bile acid signalling affects the activity of Rho proteins. Rac1/Cdc42 phosphorylation, in turn, protects Rac1/Cdc42 from TcdB-catalysed glucosylation and reduces the TcdB-induced cytopathic effects in HepG2 cells. The results of this study indicate that TUDCA may prove useful as a therapeutic agent for the treatment of CDAD.  相似文献   

3.
Certain pathogenicEscherichia coli strains elaborate a toxin, the cytotoxic necrotizing factor type 1 (CNF1). CNF1 covalently and specifically modifies the p21 Rho GTP-binding protein in mammalian cells by deamidation of the p21 Rho glutamine 63. CNF1 modification of Rho leads to permanent activation of the GTP-binding protein by blocking intrinsic and RhoGAP GTPase activities. Rho activation by CNF1 induces reorganization of the actin cytoskeleton into large stress fibers and the multiplication of focal contact points. Deamidation is a new catalytic activity described for an intracellularly acting toxin. Presented at the1st International Minisymposium on Cellular Microbiology: Cell Biology and Signalization in Host-Pathogen Interactions, Prague, October 6, 1997.  相似文献   

4.
5.
Cell morphogenesis requires dynamic reorganization of the actin cytoskeleton, a process that is tightly regulated by the Rho family of small GTPases. These GTPases act as molecular switches by shuttling between their inactive GDP-bound and active GTP-bound forms. Here we show that Nir2, a novel protein related to Drosophila retinal degeneration B (RdgB), markedly affects cell morphology through a novel Rho-inhibitory domain (Rid) which resides in its N-terminal region. Rid exhibits sequence homology with the Rho-binding site of formin-homology (FH) proteins and leads to an apparent loss of F-actin staining when ectopically expressed in mammalian cells. We also show that Rid inhibits Rho-mediated stress fiber formation and lysophosphatidic acid-induced RhoA activation. Biochemical studies demonstrated that Nir2, via Rid, preferentially binds to the inactive GDP-bound form of the small GTPase Rho. Microinjection of antibodies against Nir2 into neuronal cells markedly attenuates neurite extension, whereas overexpression of Nir2 in these cells attenuates Rho-mediated neurite retraction. These results implicate Nir2 as a novel regulator of the small GTPase Rho in actin cytoskeleton reorganization and cell morphogenesis.  相似文献   

6.
Clostridium difficile toxin A impairs tight junction function of colonocytes by glucosylation of Rho family proteins causing actin filament disaggregation and cell rounding. We investigated the effect of toxin A on focal contact formation by assessing its action on focal adhesion kinase (FAK) and the adapter protein paxillin. Exposure of NCM460 human colonocytes to toxin A for 1 h resulted in complete dephosphorylation of FAK and paxillin, while protein tyrosine phosphatase activity was reduced. Blockage of toxin A-associated glucosyltransferase activity by co-incubation with UDP-2′3′ dialdehyde did not reduce toxin A-induced FAK and paxillin dephosphorylation. GST-pull down and in vitro kinase activity experiments demonstrated toxin A binding directly to the catalytic domain of Src with suppression of its kinase activity. Direct binding of toxin A to Src, independent of any effect on protein tyrosine phosphatase or Rho glucosylation, inhibits Src kinase activity followed by FAK/paxillin inactivation. These mechanisms may contribute to toxin A inhibition of colonocyte focal adhesion that occurs in human colonic epithelium exposed to toxin A.  相似文献   

7.
8.
Lymphocyte extravasation into the brain is mediated largely by the Ig superfamily molecule ICAM-1. Several lines of evidence indicate that at the tight vascular barriers of the central nervous system (CNS), endothelial cell (EC) ICAM-1 not only acts as a docking molecule for circulating lymphocytes, but is also involved in transducing signals to the EC. In this paper, we examine the signaling pathways in brain EC following Ab ligation of endothelial ICAM-1, which mimics adhesion of lymphocytes to CNS endothelia. ICAM-1 cross-linking results in a reorganization of the endothelial actin cytoskeleton to form stress fibers and activation of the small guanosine triphosphate (GTP)-binding protein Rho. ICAM-1-stimulated tyrosine phosphorylation of the actin-associated molecule cortactin and ICAM-1-mediated, Ag/IL-2-stimulated T lymphocyte migration through EC monolayers were inhibited following pretreatment of EC with cytochalasin D. Pretreatment of EC with C3 transferase, a specific inhibitor of Rho proteins, significantly inhibited the transmonolayer migration of T lymphocytes, endothelial Rho-GTP loading, and endothelial actin reorganization, without affecting either lymphocyte adhesion to EC or cortactin phosphorylation. These data show that brain vascular EC are actively involved in facilitating T lymphocyte migration through the tight blood-brain barrier of the CNS and that this process involves ICAM-1-stimulated rearrangement of the endothelial actin cytoskeleton and functional EC Rho proteins.  相似文献   

9.
10.
Expression of connective tissue growth factor (CTGF) was induced in renal mesangial cells by activation of heptahelical receptors by serotonin (5-HT) and lysophosphatidic acid (LPA). Induction of CTGF mRNA was transient with maximal expression after 1 to 2 h, whereas induction of CTGF by transforming growth factor beta (TGF-beta) increased over time. In contrast to the induction of other early response genes (Egr-1 and cyclooxygenase-2), LPA-mediated induction of CTGF was pertussis toxin-insensitive and independent of p42/44 MAP kinase activation. 5-HT-mediated CTGF induction was due to activation of 5-HT(2A) receptors and likewise independent of p42/44 MAP kinase activation. Upon stimulation, enhanced levels of CTGF protein were detected in cellular homogenates, whereas no protein was detectable in cell culture supernatants. Inhibition of proteins of the Rho family by toxin B abrogated basal as well as CTGF expression stimulated by LPA, 5-HT, and TGF-beta. Inhibition of the downstream mediator of RhoA, the Rho kinase by Y-27632 partially reduced induction of CTGF by LPA and TGF-beta. Toxin B not only affected gene expression, but disrupted the actin cytoskeleton similarly as observed after treatment with cytochalasin D. Disassembly of actin stress fibers by cytochalasin D partially reduced basal and stimulated CTGF expression. These data indicate that an intact actin cytoskeleton is critical for the expression of CTGF. Elimination of the input of Rho proteins by toxin B, however, was significantly more effective and their effect on CTGF expression thus goes beyond disruption of the cytoskeleton. These findings thus establish activation of heptahelical receptors coupled to pertussis toxin-insensitive G proteins as a novel signaling pathway to induce CTGF. Proteins of the Rho family and an intact cytoskeleton were identified as critical determinants of CTGF expression induced by LPA and 5-HT, and also by TGF-beta.  相似文献   

11.
The principle virulence factors in Clostridium difficile pathogenesis are TcdA and TcdB, homologous glucosyltransferases capable of inactivating small GTPases within the host cell. We present crystal structures of the TcdA glucosyltransferase domain in the presence and absence of the co-substrate UDP-glucose. Although the enzymatic core is similar to that of TcdB, the proposed GTPase-binding surface differs significantly. We show that TcdA is comparable with TcdB in its modification of Rho family substrates and that, unlike TcdB, TcdA is also capable of modifying Rap family GTPases both in vitro and in cells. The glucosyltransferase activities of both toxins are reduced in the context of the holotoxin but can be restored with autoproteolytic activation and glucosyltransferase domain release. These studies highlight the importance of cellular activation in determining the array of substrates available to the toxins once delivered into the cell.  相似文献   

12.
Vasopressin regulates water reabsorption in renal collecting duct principal cells by a cAMP-dependent translocation of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the cell membrane. In the present work primary cultured inner medullary collecting duct cells were used to study the role of the proteins of the Rho family in the translocation of AQP2. Clostridium difficile toxin B, which inhibits all members of the Rho family, Clostridium limosum C3 toxin, which inactivates only Rho, and the Rho kinase inhibitor, Y-27632, induced both depolymerization of actin stress fibers and AQP2 translocation in the absence of vasopressin. The data suggest an inhibitory role of Rho in this process, whereby constitutive membrane localization is prevented in resting cells. Expression of constitutively active RhoA induced formation of actin stress fibers and abolished AQP2 translocation in response to elevation of intracellular cAMP, confirming the inhibitory role of Rho. Cytochalasin D induced both depolymerization of the F-actin cytoskeleton and AQP2 translocation, indicating that depolymerization of F-actin is sufficient to induce AQP2 translocation. Thus Rho is likely to control the intracellular localization of AQP2 via regulation of the F-actin cytoskeleton.  相似文献   

13.
Endothelial barrier function is regulated at the cellular level by cytoskeletal-dependent anchoring and retracting forces. In the present study we have examined the signal transduction pathways underlying agonist-stimulated reorganization of the actin cytoskeleton in human umbilical vein endothelial cells. Receptor activation by thrombin, or the thrombin receptor (proteinase-activated receptor 1) agonist peptide, leads to an early increase in stress fiber formation followed by cortical actin accumulation and cell rounding. Selective inhibition of thrombin-stimulated signaling systems, including Gi/o (pertussis toxin sensitive), p42/p44, and p38 MAP kinase cascades, Src family kinases, PI-3 kinase, or S6 kinase pathways had no effect on the thrombin response. In contrast, staurosporine and KT5926, an inhibitor of myosin light chain kinase, effectively blocked thrombin-induced cell rounding and retraction. The contribution of Rho to these effects was analyzed by using bacterial toxins that either activate or inhibit the GTPase. Escherichia coli cytotoxic necrotizing factor 1, an activator of Rho, induced the appearance of dense actin cables across cells without perturbing monolayer integrity. Accordingly, lysophosphatidic acid, an activator of Rho-dependent stress fiber formation in fibroblasts, led to reorganization of polymerized actin into stress fibers but failed to induce cell rounding. Inhibition of Rho with Clostridium botulinum exoenzyme C3 fused to the B fragment of diphtheria toxin caused loss of stress fibers with only partial attenuation of thrombin-induced cell rounding. The implication of Rac and Cdc42 was analyzed in transient transfection experiments using either constitutively active (V12) or dominant-interfering (N17) mutants. Expression of RacV12 mimicked the effect of thrombin on cell rounding, and RacN17 blocked the response to thrombin, whereas Cdc42 mutants were without effect. These observations suggest that Rho is involved in the maintenance of endothelial barrier function and Rac participates in cytoskeletal remodeling by thrombin in human umbilical vein endothelial cells.  相似文献   

14.
Clostridium difficile toxin A (TcdA) is one of two homologous glucosyltransferases that mono-glucosylate Rho GTPases. HT29 cells were challenged with wild-type and mutant TcdA to investigate the mechanism by which apoptosis is induced. The TcdA-induced re-organization of the actin cytoskeleton led to an increased number of cells within the G2/M phase. Depolymerization of the actin filaments with subsequent G2/M arrest, however, was not causative for apoptosis, as shown in a comparative study using latrunculin B. The activation of caspase-3, -8, and -9 strictly depended on the glucosylation of Rho GTPases. Apoptosis measured by flow cytometry was completely abolished by a pan-caspase inhibitor (z-VAD-fmk). Interestingly, cleavage of procaspase-3 and Bid was not inhibited by z-VAD-fmk, but was inhibited by the calpain/cathepsin inhibitor ALLM. Cleavage of procaspase-8 was susceptible to inhibition by z-VAD-fmk and to the caspase-3 inhibitor Ac-DMQD-CHO, indicating a contribution to the activation of caspase-3 in an amplifying manner. Although TcdA induced mitochondrial damage and cytochrome c release, p53 was not activated or up-regulated. A p53-independent apoptotic effect was also checked by treatment of HCT 116 p53−/− cells. In summary, TcdA-induced apoptosis in HT29 cells depends on glucosylation of Rho GTPases leading to activation of cathepsins and caspase-3.  相似文献   

15.
Recently, the truncated TrkB receptor, T1, has been reported to be involved in the control of cell morphology via the regulation of Rho proteins, through which T1 binds Rho guanine nucleotide dissociation inhibitor (Rho GDI) 1 and dissociates it in a brain-derived neurotrophic factor (BDNF)-dependent manner. However, it is unclear whether T1 signaling regulates the downstream of Rho signaling and the actin cytoskeleton. In this study, we investigated this question using C6 rat glioma cells, which express T1 endogenously. Rho GDI1 was dissociated from T1 in a BDNF-dependent manner, which also causes decreases in the activities of Rho-signaling molecules such as RhoA, Rho-associated kinase, p21-activated kinase, and extracellular-signal regulated kinase1/2. Moreover, BDNF treatment resulted in the disappearance of stress fibers in the cells treated with lysophosphatidic acid, an activator of RhoA, and in morphological changes in cells. Furthermore, a competitive assay with cyan fluorescent protein fusion proteins of T1-specific sequences reduced the effects of BDNF. These results suggest that T1 regulates the Rho-signaling pathways and the actin cytoskeleton.  相似文献   

16.
Migration of crawling cells (amoebae and some kinds of the tissue cells) is a process related to the dynamic reorganization of actomyosin cytoskeleton. That reorganization engages actin polymerization and de-polymerization, branching of actin network and interaction of myosin II with actin filaments. All those cytoskeleton changes lead to the cell progression, contraction and shifting of the uropod and the cell adhesion. Numerous external stimuli, which activate various surface receptors and signal transduction pathways, can promote migration. Rho family proteins play an important role in the regulation of actin cytoskeleton organization. The most known members of this family are Rho, Rac and Cdc42 proteins, present in all mammalian tissue cells. These proteins control three different stages of cell migration: progression of the frontal edge, adhesion which stabilizes the frontal area, and de-adhesion and shifting of the uropod. Cdc42 and Rac control cell polarization, lamellipodium formation and expansion, organization of focal complexes. Rho protein regulates contractile activity of actomyosin cytoskeleton outside the frontal area, and thus contraction and de-adhesion of the uropod.  相似文献   

17.
TcdA and TcdB are the main pathogenicity factors of Clostridium difficile‐associated diseases. Both toxins inhibit Rho GTPases, and consequently, apoptosis is induced in the affected cells. We found that TcdB at higher concentrations exhibits cytotoxic effects that are independent on Rho glucosylation. TcdB and the glucosyltransferase‐deficient mutant TcdB D286/288N induced pyknotic cell death which was associated with chromatin condensation and reduced H3 phosphorylation. Affected cells showed ballooning of the nuclear envelope and loss of the integrity of the plasma membrane. Furthermore, pyknotic cells were positively stained with dihydroethidium indicating production of reactive oxygen species. In line with this, pyknosis was reduced by apocynin, an inhibitor of the NADPH oxidase. Bafilomycin A1 prevented cytotoxic effects showing that the newly observed pyknosis depends on intracellular action of TcdB rather than on a receptor‐mediated effect. Blister formation and chromatin condensation was specifically induced by the glucosyltransferase domain of TcdB from strain VPI10473 since neither TcdBF from cdi1470 nor the chimera of TcdB harbouring the glucosyltransferase domain of TcdBF was able to induce these effects. In summary, TcdB induces two different and independent phenotypes: (i) cell rounding due to glucosylation of Rho GTPases and (ii) shrinkage of cells and nuclear blister induced by the high concentrations of TcdB independent of Rho glucosylation.  相似文献   

18.
The actin cytoskeleton controls multiple cellular functions, including cell morphology, movement, and growth. Accumulating evidence indicates that oncogenic activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) pathway is accompanied by actin cytoskeletal reorganization. However, the signaling events contributing to actin cytoskeleton remodeling mediated by aberrant ERK1/2 activation are largely unknown. Mutant B-RAF is found in a variety of cancers, including melanoma, and it enhances activation of the MEK/ERK1/2 pathway. We show that targeted knockdown of B-RAF with small interfering RNA or pharmacological inhibition of MEK increased actin stress fiber formation and stabilized focal adhesion dynamics in human melanoma cells. These effects were due to stimulation of the Rho/Rho kinase (ROCK)/LIM kinase-2 signaling pathway, cumulating in the inactivation of the actin depolymerizing/severing protein cofilin. The expression of Rnd3, a Rho antagonist, was attenuated after B-RAF knockdown or MEK inhibition, but it was enhanced in melanocytes expressing active B-RAF. Constitutive expression of Rnd3 suppressed the actin cytoskeletal and focal adhesion effects mediated by B-RAF knockdown. Depletion of Rnd3 elevated cofilin phosphorylation and stress fiber formation and reduced cell invasion. Together, our results identify Rnd3 as a regulator of cross talk between the RAF/MEK/ERK and Rho/ROCK signaling pathways, and a key contributor to oncogene-mediated reorganization of the actin cytoskeleton and focal adhesions.  相似文献   

19.
Small GTP-binding Rho proteins are involved in signalling, cell polarity, membrane outgrowths and actin stabilization in eukaryotes. Known plant homologues represent essentially the Rac subfamily and an original Rop (Rho in pollen). Mammalian Rho proteins are preferential targets of clostridial toxins. In alfalfa (Medicago sativa L.) cells, Clostridium botulinum C3-exoenzyme (C3) provoked disassembly of the actin cytoskeleton, similar to its effect in mammalian cells. In alfalfa proteins, several epitopes appear to be recognized by commercial antibodies raised against peptides characteristic for human Rho. One ≈ 40-kDa band was detected immunologically by anti-RhoB: a protein of this size was ADP-ribosylated by C3 and glucosylated in vitro by Clostridium difficile toxin B, without interference between the two nor from phosphatidyl inositide. C3 was also active upon a 34-kDa band which contained protein(s) immunoreactive with anti-Rac2 and which bound [γ35S]-GTP, but was glucosylated by neither toxin B nor Clostridium sordellii Lethal Toxin. An 18-kDa band detected by [γ35S]-GTP overlay was immunologically recognized by anti-Rac1. Anti-Cdc42Hs recognized a 54-kDa band. Substrates to toxin B and C3 were purified from alfalfa cell culture and partially sequenced: they included two proteins, P40 and P41, of ≈ 40 kDa (by SDS-electrophoresis). P40 appears to constitute a tetrameric aldolase (160 kDa by gel filtration; EC 4.1.2.13) whose activity is partially inhibited by toxin B and the anti-RhoB.  相似文献   

20.
Hypotonicity-induced cell swelling is characterized by a modification in cell architecture associated with actin cytoskeleton remodeling. The ezrin/radixin/moesin (ERM) family proteins are important signal transducers during actin reorganization regulated by the monomeric G proteins of the Rho family. We report here that in collecting duct CD8 cells hypotonicity-induced cell swelling resulted in deep actin reorganization, consisting of loss of stress fibers and formation of F-actin patches in membrane protrusions where the ERM protein moesin was recruited. Cell swelling increased the interaction between actin and moesin and induced the transition of moesin from an oligomeric to a monomeric functional conformation, characterized by both the COOH- and NH2-terminal domains being exposed. In this conformation, which is stabilized by phosphorylation of a conserved threonine in the COOH-terminal domain by PKC or Rho kinase, moesin can bind interacting proteins. Interestingly, hypotonic stress increased the amount of threonine-phosphorylated moesin, which was prevented by the PKC- inhibitor Gö-6976 (50 nM). In contrast, the Rho kinase inhibitor Y-27632 (1 µM) did not affect the hypotonicity-induced increase in phosphorylated moesin. The present data represent the first evidence that hypotonicity-induced actin remodeling is associated with phosphorylated moesin recruitment at the cell border and interaction with actin. ezrin/radixin/moesin; protein kinase C; Rho  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号