首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously human cytochrome P450 3A4 was efficiently and specifically photolabeled by the photoaffinity ligand lapachenole. One of the modification sites was identified as cysteine 98 in the B-C loop region of the protein [B. Wen, C.E. Doneanu, C.A. Gartner, A.G. Roberts, W.M. Atkins, S.D. Nelson, Biochemistry 44 (2005) 1833-1845]. Loss of CO binding capacity and subsequent decrease of catalytic activity were observed in the labeled CYP3A4, which suggested that aromatic substitution on residue 98 triggered a critical conformational change and subsequent loss of enzyme activity. To test this hypothesis, C98A, C98S, C98F, and C98W mutants were generated by site-directed mutagenesis and expressed functionally as oligohistidine-tagged proteins. Unlike the mono-adduction observed in the wild-type protein, simultaneous multiple adductions occurred when C98F and C98W were photolabeled under the same conditions as the wild-type enzyme, indicating a substantial conformational change in these two mutants compared with the wild-type protein. Kinetic analysis revealed that the C98W mutant had a drastic 16-fold decrease in catalytic efficiency (V(max)/K(m)) for 1'-OH midazolam formation, and about an 8-fold decrease in catalytic efficiency (V(max)/K(m)) for 4-OH midazolam formation, while the C98A and C98S mutants retained the same enzyme activity as the wild-type enzyme. Photolabeling of C98A and C98S with lapachenole resulted in monoadduction of only Cys-468, in contrast to the labeling of Cys-98 in wild-type CYP3A4, demonstrating the marked selectivity of this photoaffinity ligand for cysteine residues. The slight increases in the midazolam binding constants (K(s)) in these mutants suggested negligible perturbation of the heme environment. Further activity studies using different P450:reductase ratios suggested that the affinity of P450 to reductase was significantly decreased in the C98W mutant, but not in the C98A and C98S mutants. In addition, the C98W mutant exhibited a 41% decrease in the maximum electron flow rate between P450 and reductase as measured by reduced nicotinamide adenine dinucleotide phosphate consumption at a saturating reductase concentration. In conclusion, our data strongly suggest that cysteine 98 in the B-C loop region significantly contributes to conformational integrity and catalytic activity of CYP3A4, and that this residue or residues nearby might be involved in an interaction with P450 reductase.  相似文献   

2.
Each of the three cysteinyl residues per subunit in D-amino acid transaminase from a thermophilic species of Bacillus has been changed to a glycine residue (C142G, C164G, and C212G) by site-directed mutagenesis. The mutant enzymes were detected by Western blots and a stain for activity. After purification to homogeneity, each mutant protein had the same activity as the wild-type enzyme. Thus, none of the Cys residues are essential for catalysis. Each protein when denatured showed the expected titer of two SH groups per subunit. In the native state, each of the three mutant proteins exhibited nearly the same slow rate of titration of SH groups as the wild-type protein with about one SH group titratable over a period of 4 h. Conversion of Ser-146, adjacent to Lys-145 to which the coenzyme pyridoxal phosphate is bound, to an alanine residue (S146A) does not alter the catalytic activity but has a significant effect on the SH titration behavior. Thus, three to four of the six SH groups of S146A are titratable by DTNB. The rapid SH titration of S146A is prevented by the presence of D-alanine. This finding suggests that the change of Ser-146 to Ala at the active site promotes the exposure and rapid titration of a Cys residue in that region. The rapid SH titration of S146A by DTNB is accompanied by a loss of enzyme activity. Two of the mutant enzymes, C142G and S146A, lose activity at 4 degrees C and also upon freezing and thawing. The mutant enzymes C164G and C212G show the same degree of thermostability as the wild-type enzyme.  相似文献   

3.
Human cytochrome P450 2C9 (CYP2C9) is one of the major drug metabolising enzymes which exhibits a broad substrate specificity. The B-C loop is located in the active-site but has been difficult to model, owing to its diverse and flexible structure. To elucidate the function of the B-C loop we used homology modelling based on the Cyp102 structure in combination with functional studies of mutants using diclofenac as a model substrate for CYP2C9. The study shows the importance of the conserved arginine in position 97 and the arginine in position 108 for the catalytic function. The R97A mutant had a 13-fold higher K(m) value while the V(max) was in the same order as the wild type. The R108 mutant had a 100-fold lower activity with diclofenac compared to the wild-type enzyme. The other six mutants (S95A, F100A, L102A, E104A, R105A, and N107A) had kinetic parameters similar to the CYP2C9 wild-type. Our homology model based on the CYP102 structure as template indicates that R97, L102, and R105 are directed into the active site, whereas R108 is not. The change in catalytic function when arginine 97 was replaced with alanine and the orientation of this amino acid in our homology model indicates its importance for substrate interaction.  相似文献   

4.
Bioinformatics analyses enabled us to identify the hypothetical determinants of catalysis by CYP74 family enzymes. To examine their recognition, two mutant forms F295I and S297A of tomato allene oxide synthase LeAOS3 (CYP74C3) were prepared by site-directed mutagenesis. Both mutations dramatically altered the enzyme catalysis. Both mutant forms possessed the activity of hydroperoxide lyase, while the allene oxide synthase activity was either not detectable (F295I) or significantly reduced (S297A) compared to the wild-type LeAOS3. Thus, both sites 295 and 297 localized within the "I-helix central domain" ("oxygen binding domain") are the primary determinants of CYP74 type of catalysis.  相似文献   

5.
A multifamily sequence alignment of the rabbit CYP4A members with the known structure of CYP102 indicates amino acid differences falling within the so-called substrate recognition site(s) (SRS). Chimeric proteins constructed between CYP4A4 and CYP4A7 indicate that laurate activity is affected by the residues within SRS1 and prostaglandin activity is influenced by SRS2-3. Site-directed mutant proteins of CYP4A7 found laurate and arachidonate activity markedly diminished in the R90W mutant (SRS1) and somewhat decreased in W93S. While PGE(1) activity was only slightly increased, the mutant proteins H206Y and S255F (SRS2-3), on the other hand, exhibited remarkable increases in laurate and arachidonate metabolism (3-fold) above wild-type substrate metabolism. Mutant proteins H206Y, S255F, and H206Y/S255F but not R90W/W93S, wild-type CYP4A4, or CYP4A7 metabolized arachidonic acid in the absence of cytochrome b(5). Stopped-flow kinetic experiments were performed in a CO-saturated environment performed to estimate interaction rates of the monooxygenase reaction components. The mutant protein H206Y, which exhibits 3-fold higher than wild-type substrate activity, interacts with CPR at a rate at least 10 times faster than that of wild-type CYP4A7. These experimental results provide insight regarding the residues responsible for modulation of substrate specificity, affinity, and kinetics, as well as possible localization within the enzyme structure based on comparisons with homologous, known cytochrome P450 structures.  相似文献   

6.
Of the major amino acid side chains that anchor pyridoxal 5'-phosphate at the coenzyme binding site of bacterial D-amino acid transaminase, two have been substituted using site-directed mutagenesis. Thus, Ser-180 was changed to an Ala (S180A) with little effect on enzyme activity, but replacement of Tyr-31 by Gln (Y31Q) led to 99% loss of activity. Titration of SH groups of the native Y31Q enzyme with DTNB proceeded much faster and to a greater extent than the corresponding titration for the native wild-type and S180A mutant enzymes. The stability of each mutant to denaturing agents such as urea or guanidine was similar, i.e., in their PLP forms, S180A and Y31Q lost 50% of their activities at a 5-15% lower concentration of urea or guanidine than did the wild-type enzyme. Upon removal of denaturing agent, significant activity was restored in the absence of added pyridoxal 5'-phosphate, but addition of thiols was required. In spite of its low activity, Y31Q was able to form the PMP form of the enzyme just as readily as the wild-type and the S180A enzymes in the presence of normal D-amino acid substrates. However, beta-chloro-D-alanine was a much better substrate and inactivator of the Y31Q enzyme than it was for the wild-type or S180A enzymes, most likely because the Y31Q mutant formed the pyridoxamine 5-phosphate form more rapidly than the other two enzymes. The stereochemical fidelity of the Y31Q recombinant mutant enzyme was much less than that of the S180A and wild-type enzymes because racemase activity, i.e., conversion of L-alanine to D-alanine, was higher than for the wild-type or S180A mutant enzymes, perhaps because the coenzyme has more flexibility in this mutant enzyme.  相似文献   

7.
In this study, site-directed mutagenesis was performed on the β-agarase AgaA gene from Zobellia galactanivorans to improve its catalytic activity and thermostability. The activities of three mutant enzymes, S63K, C253I, and S63K-C253I, were 126% (1,757.78 U/mg), 2.4% (33.47 U/mg), and 0.57% (8.01 U/mg), respectively, relative to the wildtype beta-agarase AgaA (1,392.61 U/mg) at 40°C. The stability of the mutant S63K enzyme was 125% of the wild-type up to 45°C, where agar is in a sol state. The mutant S63K enzyme produced 166%, 257%, and 220% more neoagarohexaose, and 230%, 427%, and 350% more neoagarotetraose than the wild-type in sol, gel, and nonmelted powder agar, respectively, at 45°C over 24 h. The mutant S63K enzyme produced 50% more neoagarooligosaccharides from agar than the wild-type beta-agarase AgaA from agarose under the same conditions. Thus, mutant S63K β-agarase AgaA may be useful for the production of functional neoagarooligosaccharides.  相似文献   

8.
The function of aspartic acid residue 101 in the active site of Escherichia coli alkaline phosphatase was investigated by site-specific mutagenesis. A mutant version of alkaline phosphatase was constructed with alanine in place of aspartic acid at position 101. When kinetic measurements are carried out in the presence of a phosphate acceptor, 1.0 M Tris, pH 8.0, both the kcat and the Km for the mutant enzyme increase by approximately 2-fold, resulting in almost no change in the kcat/Km ratio. Under conditions of no external phosphate acceptor and pH 8.0, both the kcat and the Km for the mutant enzyme decrease by approximately 2-fold, again resulting in almost no change in the kcat/Km ratio. The kcat for the hydrolysis of 4-methyl-umbelliferyl phosphate and p-nitrophenyl phosphate are nearly identical for both the wild-type and mutant enzymes, as is the Ki for inorganic phosphate. The replacement of aspartic acid 101 by alanine does have a significant effect on the activity of the enzyme as a function of pH, especially in the presence of a phosphate acceptor. At pH 9.4 the mutant enzyme exhibits 3-fold higher activity than the wild-type. The mutant enzyme also exhibits a substantial decrease in thermal stability: it is half inactivated by treatment at 49 degrees C for 15 min compared to 71 degrees C for the wild-type enzyme. The data reported here suggest that this amino acid substitution alters the rates of steps after the formation of the phospho-enzyme intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We identify His381 of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase as the basic residue functional in catalysis. The catalytic domain of 20 HMG-CoA reductases contains a single conserved histidine (His381 of the P. mevalonii enzyme). Diethyl pyrocarbonate inactivated the P. mevalonii enzyme, and hydroxylamine partially restored activity. We changed His381 to alanine, lysine, asparagine, and glutamine. The mutant proteins were overexpressed, purified to homogeneity, and characterized. His381 mutant enzymes were not inactivated by diethyl pyrocarbonate. All four mutant enzymes exhibited wild-type crystal morphology and chromatographed on substrate affinity supports like wild-type enzyme. The mutant enzymes had low catalytic activity (Vmax 0.06-0.5% that of wild-type enzyme), but Km values approximated those for wild-type enzyme. For wild-type enzyme and mutant enzymes H381A, H381N, and H381Q, Km values at pH 8.1 were 0.45, 0.27, 3.7, and 0.71 mM [(R,S)-mevalonate]; 0.05, 0.03, 0.20, and 0.11 mM [coenzyme A]; 0.22, 0.14, 0.81, and 0.62 mM [NAD+]. Km values at pH 11 for wild-type enzyme and mutant enzyme H381K were 0.32 and 0.75 mM [(R,S)-mevalonate]; 0.24 and 0.50 mM [coenzyme A]; 0.15 and 1.23 mM [NAD+]. Both pK values for the enzyme-substrate complex increased relative to wild-type enzyme (by 1-2.5 pH units for pK1 and by 0.5-1.3 pH units for pK2). For mutant enzyme H381K, the pK1 of 10.2 is consistent with lysine acting as a general base at high pH. His381 of P. mevalonii HMG-CoA reductase, and consequently the histidine of the consensus Leu-Val-Lys-Ser-His-Met-Xaa-Xaa-Asn-Arg-Ser motif of the catalytic domain of eukaryotic HMG-CoA reductases, thus is the general base functional in catalysis.  相似文献   

10.
Phosphoenolpyruvate carboxylase (PEPC) is a "multifaceted," allosteric enzyme involved in C4 acid metabolism in green plants/microalgae and prokaryotes. Before the elucidation of the three-dimensional structures of maize C4 leaf and Escherichia coli PEPC, our truncation analysis of the sorghum C4 homologue revealed important roles for the enzyme's C-terminal alpha-helix and its appended QNTG961 tetrapeptide in polypeptide stability and overall catalysis, respectively. Collectively, these functional and structural observations implicate the importance of the PEPC C-terminal tetrapeptide for both catalysis and negative allosteric regulation. We have now more finely dissected this element of PEPC structure-function by modification of the absolutely conserved C-terminal glycine of the sorghum C4 isoform by site-specific mutagenesis (G961(A/V/D)) and truncation (DeltaC1/C4). Although the C4 polypeptide failed to accumulate in a PEPC- strain (XH11) of E. coli transformed with the Asp mutant, the other variants were produced at wild-type levels. Although neither of these four mutants displayed an apparent destabilization of the purified PEPC homotetramer, all were compromised catalytically in vivo and in vitro. Functional complementation of XH11 cells under selective growth conditions was restricted progressively by the Ala, DeltaC1 and Val, and DeltaC4 modifications. Likewise, steady-state kinetic analysis of the purified mutant enzymes revealed corresponding negative trends in kcat and kcat/K0.5 (phosphoenolpyruvate) but not in K0.5 or the Hill coefficient. Homology modeling of these sorghum C-terminal variants against the structure of the closely related maize C4 isoform predicted perturbations in active-site molecular cavities and/or ion-pairing with essential, invariant Arg-638. These collective observations reveal that even a modest, neutral alteration of the PEPC C-terminal hydrogen atom side chain is detrimental to enzyme function.  相似文献   

11.
We engineered an acetyl xylan esterase (AwaxeA) gene from Aspergillus awamori into a heterologous expression system in Pichia pastoris. Purified recombinant AwAXEA (rAwAXEA) displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. Putative catalytic residues, Ser(119), Ser(146), Asp(168) and Asp(202), were substituted for alanine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the four mutant enzymes were examined. The S119A and D202A mutant enzymes were catalytically inactive, whereas S146A and D168A mutants displayed significant hydrolytic activity. These observations indicate that Ser(119) and Asp(202) are important for catalysis. The S146A mutant enzyme showed lower specific activity toward the C2 substrate and higher thermal stability than wild-type enzyme. The lower activity of S146A was due to a combination of increased K(m) and decreased k(cat). The catalytic efficiency of S146A was 41% lower than that of wild-type enzyme. The synthesis of ethyl acetate was >10-fold than that of ethyl n-hexanoate synthesis for the wild-type, S146A and D168A mutant enzymes. However, the D202A showed greater synthetic activity of ethyl n-hexanoate as compared with the wild-type and other mutants.  相似文献   

12.
Introducing a C(4)-like pathway into C(3) plants is one of the proposed strategies for the enhancement of photosynthetic productivity. For this purpose it is necessary to provide each component enzyme that exerts strong activity in the targeted C(3) plants. Here, a maize C(4)-form phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) was engineered for its regulatory and catalytic properties so as to be functional in the cells of C(3) plants. Firstly, amino acid residues Lys-835 and Arg-894 of maize PEPC, which correspond to Lys-773 and Arg-832 of Escherichia coli PEPC, respectively, were replaced by Gly, since they had been shown to be involved in the binding of allosteric inhibitors, malate or aspartate, by our X-ray crystallographic analysis of E. coli PEPC. The resulting mutant enzymes were active but their sensitivities to the inhibitors were greatly diminished. Secondly, a Ser residue (S780) characteristically conserved in all C(4)-form PEPC was replaced by Ala conserved in C(3)- and root-form PEPCs to decrease the half-maximal concentration (S(0.5)) of PEP. The double mutant enzyme (S780A/K835G) showed diminished sensitivity to malate and decreased S(0.5)(PEP) with equal maximal catalytic activity (V(m)) to the wild-type PEPC, which will be quite useful as a component of the C(4)-like pathway to be introduced into C(3) plants.  相似文献   

13.
Sun L  Martin DC  Kantrowitz ER 《Biochemistry》1999,38(9):2842-2848
Escherichia coli alkaline phosphatase catalyzes both the nonspecific hydrolysis of phosphomonoesters and a transphosphorylation reaction in which phosphate is transferred to an alcohol via a phosphoseryl intermediate. The rate-determining step for the wild-type enzyme is pH dependent. At alkaline pH, release of the product phosphate from the noncovalent enzyme-phosphate complex determines the reaction rate, whereas at acidic pH hydrolysis of the covalent enzyme-phosphate complex controls the reaction rate. When the lysine at position 328 was substituted with a cysteine (K328C), the rate-determining step at pH 8.0 of the mutant enzyme was altered so that hydrolysis of the covalent intermediate became limiting rather than phosphate release. The transphosphorylation activity of the K328C enzyme was selectively enhanced, while the hydrolysis activity was reduced compared to that of the wild-type enzyme. The ratio of the transphosphorylation to the hydrolysis activities increased 28-fold for the K328C enzyme in comparison with the wild-type enzyme. Several other mutant enzymes for which a positive charge at the active center is removed by site-specific mutagenesis share this characteristic of the K328C enzyme. These results suggest that the positive charge at position 328 is at least partially responsible for maintaining the balance between the hydrolysis and transphosphorylation activities and plays an important role in determining the rate-limiting step of E. coli alkaline phosphatase.  相似文献   

14.
The pantothenic acid content of gramicidin S synthetase 2(GS 2) was estimated microbiologically with enzymes obtained from the wild strain and gramicidin S-lacking mutant strains of Bacillus brevis. Four mutant enzymes from BI-4, C-3, E-1, and E-2 lacked pantothenic acid. Other mutant enzymes from BII-3, BI-3, BI-9, and BI-2 contained the same amount of pantothenic acid as the wild-type enzyme. Pantothenic acid-lacking GS 2 belonged to group V of mutant enzymes, which could activate all amino acids related to gramicidin S; their complementary enzyme, gramicidin S synthetase 1(GS 1), lacked racemizing activity. To ascertain whether 4'-phosphopantetheine is involved in the formation of D-phenylalanyl-L-prolyl diketopiperazine (DKP) and gramicidin S, combinations were tested of intact GS 1 from the wild strain with various mutant GS 2 either containing or lacking pantothenic acid. Only the combinations of wild-type GS 1 with mutant GS 2 containing pantothenic acid could synthesize DKP. Combinations with pantothenic acid-lacking GS 2 also failed to elongate peptide chains. Pantothenic acid-lacking GS 2 could bind the four amino acids which constitute gramicidin S as acyladenylates and thioesters, but the binding abilities were lower than those of the wild-type enzyme and other mutant enzymes containing the pantothenic group.  相似文献   

15.
Cytochrome P450 oxidoreductase (POR) is known as the sole electron donor in the metabolism of drugs by cytochrome P450 (CYP) enzymes in human. However, little is known about the effect of polymorphic variants of POR on drug metabolic activities of CYP3A4 and CYP2B6. In order to better understand the mechanism of the activity of CYPs affected by polymorphic variants of POR, six full-length mutants of POR (e.g., Y181D, A287P, K49N, A115V, S244C and G413S) were designed and then co-expressed with CYP3A4 and CYP2B6 in the baculovirus-Sf9 insect cells to determine their kinetic parameters. Surprisingly, both mutants, Y181D and A287P in POR completely inhibited the CYP3A4 activity with testosterone, while the catalytic activity of CYP2B6 with bupropion was reduced to approximately ~70% of wild-type activity by Y181D and A287P mutations. In addition, the mutant K49N of POR increased the CLint (Vmax/Km) of CYP3A4 up to more than 31% of wild-type, while it reduced the catalytic efficiency of CYP2B6 to 74% of wild-type. Moreover, CLint values of CYP3A4-POR (A115V, G413S) were increased up to 36% and 65% of wild-type respectively. However, there were no appreciable effects observed by the remaining two mutants of POR (i.e., A115V and G413S) on activities of CYP2B6. In conclusion, the extent to which the catalytic activities of CYP were altered did not only depend on the specific POR mutations but also on the isoforms of different CYP redox partners. Thereby, we proposed that the POR-mutant patients should be carefully monitored for the activity of CYP3A4 and CYP2B6 on the prescribed medication.  相似文献   

16.
The gamma subunit of the Escherichia coli F1 ATPase (ECF1) has been altered by site-directed mutagenesis to create five different mutants, gamma-S8C, gamma-S81C, gamma-T106C, gamma-S179C, and gamma-V286C, respectively. ECF1 isolated from four of these mutants had ATPase activities similar to that of a wild-type isogenic strain used as a control, the exception was enzyme isolated from mutant gamma-S81C, which had an ATPase activity of around 70-80% of the wild type. ECF1 isolated from each of the various mutants was reacted with N-(4-(7-(diethylamino)-4-methylcoumarin-3-yl))maleimide (CM). The fluorescent reagent was incorporated into Cys residues placed at positions 8, 106, 179, and 286, but not at 81, indicating which of these Cys residues are on the surface of the gamma subunit in the enzyme complex. Modification of the Cys at position 106 with CM activated the enzyme, and modification of the Cys at position 8 inhibited ATPase activity a small amount; however, modification of Cys at 179 or 286 had no effect on enzyme activity. The four mutants with a reactive Cys were reacted with tetrafluorophenylazide maleimides (TFPAMs), novel photoactivatable cross-linkers. In the mutant gamma-S8C, cross-links were formed between the introduced Cys on the gamma subunit and sites on the beta subunit. This cross-linking between gamma and beta depended on nucleotide conditions under which the photolysis was carried out, with differently migrating cross-linked products being obtained in ATP + EDTA compared with ATP + Mg2+ or ATP + Mg2+ Pi. Cross-linking between beta and gamma inhibited ATPase activity in proportion to the yield of cross-linked product. In the mutant gamma-V286C, cross-links were formed between the introduced Cys on gamma and the alpha subunit which were the same in all nucleotide conditions and which led to inhibition of ATPase activity.  相似文献   

17.
CYP2C19 is selective for the 4'-hydroxylation of S-mephenytoin while the highly similar CYP2C9 has little activity toward this substrate. To identify critical amino acids determining the specificity of human CYP2C19 for S-mephenytoin 4'-hydroxylation, we constructed chimeras by replacing portions of CYP2C9 containing various proposed substrate recognition sites (SRSs) with those of CYP2C19 and mutating individual residues by site-directed mutagenesis. Only a chimera containing regions encompassing SRSs 1--4 was active (30% of wild-type CYP2C19), indicating that multiple regions are necessary to confer specificity for S-mephenytoin. Mutagenesis studies identified six residues in three topological components of the proteins required to convert CYP2C9 to an S-mephenytoin 4'-hydroxylase (6% of the activity of wild-type CYP2C19). Of these, only the I99H difference located in SRS 1 between helices B and C reflects a change in a side chain that is predicted to be in the substrate-binding cavity formed above the heme prosthetic group. Two additional substitutions, S220P and P221T residing between helices F and G but not in close proximity to the substrate binding site together with five differences in the N-terminal portion of helix I conferred S-mephenytoin 4'-hydroxylation activity with a K(M) similar to that of CYP2C19 but a 3-fold lower K(cat). Three residues in helix I, S286N, V292A, and F295L, were essential for S-mephenytoin 4'-hydroxylation activity. On the basis of the structure of the closely related enzyme CYP2C5, these residues are unlikely to directly contact the substrate during catalysis but are positioned to influence the packing of substrate binding site residues and likely substrate access channels in the enzyme.  相似文献   

18.
In this study, wild-type human CYP1A2 without the conventional N-terminal modification (second codon GCT) or the truncation of the N-terminal hydrophobic region was functionally expressed in Escherichia coli. Its enzymatic properties were compared with N-terminally modified CYP1A2. Although modified CYP1A2 is almost all high-spin, some wild-type CYP1A2 shifted to low-spin. Spectral binding titrations with several ligands could be performed with wild-type enzyme, but not with modified enzyme. Kinetic parameters for several substrates were similar for the two CYP1A2 enzymes. However, the oxidation rates of phenacetin by modified enzyme were approximately 2-fold higher than those by wild-type enzyme. The intermolecular isotope effects were approximately 2 for phenacetin O-deethylation catalyzed by both enzymes. However, the wild-type enzyme, but not the modified enzyme, increased C-hydroxylation when O-deethylation rates were lowered by deuterium substitution. Molecular switching indicates that phenacetin rotates within the active site of wild-type enzyme and suggests a looser conformation in the active site of the wild-type enzyme than of the modified enzyme. These results reveal that the overall enzymatic properties of wild-type CYP1A2 enzyme are quite similar to those of modified CYP1A2, although its active site environment seems to differ from that of the modified enzyme.  相似文献   

19.
The mild nonclassic form of steroid 21-hydroxylase deficiency is one of the most common autosomal recessive disorders in humans, occurring in almost 1% of caucasians and about 3% of Ashkenazi Jews. Many patients with this disorder carry a Val-281----Leu missense mutation in the CYP21 gene. This and most other mutations causing 21-hydroxylase deficiency are normally present in the CYP21P pseudogene and have presumably been transferred to CYP21 by gene conversion. To identify other potential nonclassic alleles, we used recombinant vaccinia virus to express two mutant enzymes carrying the mutations Pro-30----Leu (normally present in CYP21P) and Ser-268----Thr (considered a normal polymorphism of CYP21). Whereas the activity of the protein carrying the Ser----Thr mutation was indeed indistinguishable from the wild type, the enzyme with the Pro----Leu substitution had 60% of wild-type activity for 17-hydroxyprogesterone and about 30% of normal activity for progesterone when assayed in intact cells. When kinetic analysis of the latter mutant enzyme was performed in cellular lysates, the first order rate constants (maximum velocity/dissociation constant) for both substrates were reduced 10- to 20-fold compared with those for the wild-type enzyme. Pro-30 is conserved in many microsomal P450 enzymes and may be important for proper orientation of the enzyme with respect to the aminoterminal transmembrane segment. The Pro----Leu mutation was present in 5 of 18 patients with nonclassic 21-hydroxylase deficiency, suggesting that this mutation indeed acts as a nonclassic deficiency allele.  相似文献   

20.
CYP101D2 is a cytochrome P450 monooxygenase from Novosphingobium aromaticivorans which is closely related to CYP101A1 (P450cam) from Pseudomonas putida. Both enzymes selectively hydroxylate camphor to 5-exo-hydroxycamphor, and the residues that line the active sites of both enzymes are similar including the pre-eminent Tyr96 residue. However, Met98 and Leu253 in CYP101D2 replace Phe98 and Val247 in CYP101A1, and camphor binding only results in a maximal change in the spin state to 40 % high-spin. Substitutions at Tyr96, Met98 and Leu253 in CYP101D2 reduced both the spin state shift on camphor binding and the camphor oxidation activity. The Tyr96Ala mutant increased the affinity of CYP101D2 for hydrocarbon substrates including adamantane, cyclooctane, hexane and 2-methylpentane. The monooxygenase activity of the Tyr96Ala variant towards alkane substrates was also enhanced compared with the wild-type enzyme. The crystal structure of the substrate-free form of this variant shows the enzyme in an open conformation (PDB: 4DXY), similar to that observed with the wild-type enzyme (PDB: 3NV5), with the side chain of Ala96 pointing away from the heme. Despite this, the binding and activity data suggest that this residue plays an important role in substrate binding, evidencing that the enzyme probably undergoes catalysis in a more closed conformation, similar to those observed in the crystal structures of CYP101A1 (PDB: 2CPP) and CYP101D1 (PDB: 3LXI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号