首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1996 World Food Summit defined food security as "Food security exists when all people, at all times, have physical and economic access to sufficient, safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life". This paper looks at the status of production from both shrimp capture fisheries and shrimp aquaculture, as well as trade, in order to understand the contribution of the crustacean sector to overall fish production and thus to global food security. This paper also examines some sustainability issues that will potentially affect the contribution of the crustacean sector (particularly shrimp) to food security. These include sustainable shrimp capture fisheries, sustainable shrimp trade and sustainable shrimp aquaculture. The paper concludes that crustaceans are an important source of aquatic food protein. Production (as food and ornamental) and trade are extremely important for developing countries. It provides both economic development and empowerment in terms of contribution to GDP, consumption, employment, catch value and exports. The crustacean sector generates high value export products which enables producers to buy lower value products in the world market - thus a positive contribution to food security in both producing and exporting countries.  相似文献   

2.
Although food prices in major world markets are at or near a historical low, there is increasing concern about food security—the ability of the world to provide healthy and environmentally sustainable diets for all its peoples. This article is an introduction to a collection of reviews whose authors were asked to explore the major drivers affecting the food system between now and 2050. A first set of papers explores the main factors affecting the demand for food (population growth, changes in consumption patterns, the effects on the food system of urbanization and the importance of understanding income distributions) with a second examining trends in future food supply (crops, livestock, fisheries and aquaculture, and ‘wild food’). A third set explores exogenous factors affecting the food system (climate change, competition for water, energy and land, and how agriculture depends on and provides ecosystem services), while the final set explores cross-cutting themes (food system economics, food wastage and links with health). Two of the clearest conclusions that emerge from the collected papers are that major advances in sustainable food production and availability can be achieved with the concerted application of current technologies (given sufficient political will), and the importance of investing in research sooner rather than later to enable the food system to cope with both known and unknown challenges in the coming decades.  相似文献   

3.
This paper reports the results of a series of research projects which have aimed to evaluate the implications of climate change for food production and risk of hunger. There are three sets of results: (a) for IS92a (previously described as a 'business-as-usual' climate scenario); (b) for stabilization scenarios at 550 and 750 ppm and (c) for Special Report on Emissions Scenarios (SRES). The main conclusions are: (i) the region of greatest risk is Africa; (ii) stabilization at 750 ppm avoids some but not most of the risk, while stabilization at 550 ppm avoids most of the risk and (iii) the impact of climate change on risk of hunger is influenced greatly by pathways of development. For example, a SRES B2 development pathway is characterized by much lower levels of risk than A2; and this is largely explained by differing levels of income and technology not by differing amounts of climate forcing.  相似文献   

4.

Aim

Understanding how climate affects species distributions remains a major challenge, with the relative importance of direct physiological effects versus biotic interactions still poorly understood. We focus on three species of resource specialists (crossbill Loxia finches) to assess the role of climate in determining the seasonal availability of their food, the importance of climate and the occurrence of their food plants for explaining their current distributions, and to predict changes in their distributions under future climate change scenarios.

Location

Europe.

Methods

We used datasets on the timing of seed fall in European Scots pine Pinus sylvestris forests (where different crossbill species occur) to estimate seed fall phenology and climate data to determine its influence on spatial and temporal variation in the timing of seed fall to provide a link between climate and seed scarcity for crossbills. We used large‐scale datasets on crossbill distribution, cover of the conifers relied on by the three crossbill species and climate variables associated with timing of seed fall, to assess their relative importance for predicting crossbill distributions. We used species distribution modelling to predict changes in their distributions under climate change projections for 2070.

Results

We found that seed fall occurred 1.5–2 months earlier in southern Europe than in Sweden and Scotland and was associated with variation in spring maximum temperatures and precipitation. These climate variables and area covered with conifers relied on by the crossbills explained much of their observed distributions. Projections under global change scenarios revealed reductions in potential crossbill distributions, especially for parrot crossbills.

Main conclusions

Ranges of resource specialists are directly influenced by the presence of their food plants, with climate conditions further affecting resource availability and the window of food scarcity indirectly. Future distributions will be determined by tree responses to changing climatic conditions and the impact of climate on seed fall phenology.
  相似文献   

5.
Rampitsch C  Bykova NV 《Proteomics》2012,12(4-5):673-690
The study of plant disease and immunity is benefiting tremendously from proteomics. Parallel streams of research from model systems, from pathogens in vitro and from the relevant pathogen-crop interactions themselves have begun to reveal a model of how plants succumb to invading pathogens and how they defend themselves without the benefit of a circulating immune system. In this review, we discuss the contribution of proteomics to these advances, drawing mainly on examples from crop-fungus interactions, from Arabidopsis-bacteria interactions, from elicitor-based model systems and from pathogen studies, to highlight also the important contribution of non-crop systems to advancing crop protection.  相似文献   

6.
Hickley  Phil  Bailey  Roland  Harper  David M.  Kundu  Rodrick  Muchiri  Mucai  North  Rick  Taylor  Andy 《Hydrobiologia》2002,479(1-3):181-190
I describe a laboratory system for investigating the role of light as a proximate cue for diel changes in locomotor activity and vertical location on the substrate of stream macro-invertebrates. The system consisted of computer-controlled halogen lamps positioned over a laboratory stream in which video-recordings were made of Stenonema modestum mayfly nymphs located on the undersides of unglazed tile substrates. Locomotor activity of study organisms in response to light changes were quantified during computer-programmed and reproducible light/dark (LD) cycles. The system provided the flexibility to simulate a variety of light environments so that the separate influences of light intensity and light change on diel activities of individuals and populations could be examined, which is difficult under natural light conditions. As a group, nymphs responded similarly to simulated twilight (light decrease from 7.9 × 102 to 6.9 × 10–2 W cm–2 at a constant –1.9 × 10–3 s–1 rate of relative light change) and to natural twilight, suggesting that proposed mechanisms of light control of diel activities in nature can be adequately tested in the simulated environment. However, locomotor activity and vertical movements among individual mayflies were highly variable under controlled conditions, suggesting that physiological differences influence their responses to environmental conditions.  相似文献   

7.
It is often suggested that gelatinous zooplankton may benefit from anthropogenic pressures of all kinds and in particular from climate change. Large pelagic tunicates, for example, are likely to be favored over other types of macrozooplankton due to their filter-feeding mode, which gives them access to small preys thought to be less affected by climate change than larger preys. In this study, we provide model-based estimate of potential community changes in macrozooplankton composition and estimate for the first time their effects on benthic food supply and on the ocean carbon cycle under two 21st-century climate-change scenarios. Forced with output from an Earth System Model climate projections, our ocean biogeochemical model simulates a large reduction in macrozooplankton biomass in response to anthropogenic climate change, but shows that gelatinous macrozooplankton are less affected than nongelatinous macrozooplankton, with global biomass declines estimated at −2.8% and −3.5%, respectively, for every 1°C of warming. The inclusion of gelatinous macrozooplankon in our ocean biogeochemical model has a limited effect on anthropogenic carbon uptake in the 21st century, but impacts the projected decline in particulate organic matter fluxes in the deep ocean. In subtropical oligotrophic gyres, where gelatinous zooplankton dominate macrozooplankton, the decline in the amount of organic matter reaching the seafloor is reduced by a factor of 2 when gelatinous macrozooplankton are considered (−17.5% vs. −29.7% when gelatinous macrozooplankton are not considered, all for 2100 under RCP8.5). The shift to gelatinous macrozooplankton in the future ocean therefore buffers the decline in deep carbon fluxes and should be taken into account when assessing potential changes in deep carbon storage and the risks that deep ecosystems may face when confronted with a decline in their food source.  相似文献   

8.
9.
The iconic giraffe, an ecologically important browser, has shown a substantial decline in numbers across Africa since the 1990s. In Serengeti National Park, Tanzania, giraffes reached densities of 1.5–2.6 individuals km−2 in the 1970s coincident with a pulse of Acacia tree recruitment. However, despite continued increases in woody cover between the 1980s and the 2000s, giraffe recruitment and survival rates have declined and density has dropped to only 0.3–0.4 giraffes km−2. We used a decision table to investigate how four extrinsic factors may have contributed to these declines: food supply, predation, parasites, and poaching, which have all been previously shown to limit Serengeti ungulate populations. Lower recruitment likely resulted from a reduction in diet quality, owing to the replacement of preferred trees with unpalatable species, while decreased adult survival resulted from illegal harvesting, which appears to have had a greater impact on giraffe populations bordering the western and northern Serengeti. The Serengeti giraffe population will likely persist at low-to-moderate densities until palatable tree species regain their former abundance. Leslie matrix models suggest that park managers should meanwhile redouble their efforts to reduce poaching, thereby improving adult survival.  相似文献   

10.
11.
12.
Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid–base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studies have demonstrated that elevated CO2 projected for end of this century (e.g. 800–1000 μatm) can also impact physiology, and have substantial effects on behaviours linked to sensory stimuli (smell, hearing and vision) both having negative implications for fitness and survival. In contrast, the aquaculture industry was farming aquatic animals at CO2 levels that far exceed end‐of‐century climate change projections (sometimes >10 000 μatm) long before the term ‘ocean acidification’ was coined, with limited detrimental effects reported. It is therefore vital to understand the reasons behind this apparent discrepancy. Potential explanations include 1) the use of ‘control’ CO2 levels in aquaculture studies that go beyond 2100 projections in an ocean acidification context; 2) the relatively benign environment in aquaculture (abundant food, disease protection, absence of predators) compared to the wild; 3) aquaculture species having been chosen due to their natural tolerance to the intensive conditions, including CO2 levels; or 4) the breeding of species within intensive aquaculture having further selected traits that confer tolerance to elevated CO2. We highlight this issue and outline the insights that climate change and aquaculture science can offer for both marine and freshwater settings. Integrating these two fields will stimulate discussion on the direction of future cross‐disciplinary research. In doing so, this article aimed to optimize future research efforts and elucidate effective mitigation strategies for managing the negative impacts of elevated CO2 on future aquatic ecosystems and the sustainability of fish and shellfish aquaculture.  相似文献   

13.
14.
The aim of this study was to assess the individual effects of cooling, increased oxygenation, and umbilical cord occlusion on nonshivering thermogenesis in utero. A cooling coil was placed around eight fetal sheep of 132-145 days gestation; thermistors were placed in the fetal esophagus and maternal iliac artery, vascular catheters and a tracheal catheter were inserted, and a snare was placed loosely around the umbilical cord. The next day cold water was circulated through the coil for 5 h. During the 1st h of cooling alone, fetal core temperature fell 2.79 degrees C, but indexes of brown fat activity increased only slightly. After ventilation with O2, plasma free fatty acid concentration (FFA) rose 7.4-fold to 244 +/- 42 mu eq/l, glycerol concentration rose fourfold to 376 +/- 85 microM, and the difference between brown fat and core temperature widened to 0.60 +/- 0.10 degrees C. Ventilation with N2-enriched air did not evoke similar responses. After snaring the umbilical cord while ventilation was continued, FFA rose to 554 +/- 95 mu eq/l, glycerol rose to 684 +/- 76 microM, and the temperature difference widened to 0.77 +/- 0.13 degrees C. Whole-body O2 consumption peaked at 19.6 ml.min-1.kg-1 of fetal tissue. We conclude that fetal thermogenic responses are limited in part by O2 delivery to brown fat and are augmented by occlusion of the umbilical cord.  相似文献   

15.
Interlocked challenges of climate change, biodiversity loss, and land degradation require transformative interventions in the land management and food production sectors to reduce carbon emissions, strengthen adaptive capacity, and increase food security. However, deciding which interventions to pursue and understanding their relative co‐benefits with and trade‐offs against different social and environmental goals have been difficult without comparisons across a range of possible actions. This study examined 40 different options, implemented through land management, value chains, or risk management, for their relative impacts across 18 Nature's Contributions to People (NCPs) and the 17 Sustainable Development Goals (SDGs). We find that a relatively small number of interventions show positive synergies with both SDGs and NCPs with no significant adverse trade‐offs; these include improved cropland management, improved grazing land management, improved livestock management, agroforestry, integrated water management, increased soil organic carbon content, reduced soil erosion, salinization, and compaction, fire management, reduced landslides and hazards, reduced pollution, reduced post‐harvest losses, improved energy use in food systems, and disaster risk management. Several interventions show potentially significant negative impacts on both SDGs and NCPs; these include bioenergy and bioenergy with carbon capture and storage, afforestation, and some risk sharing measures, like commercial crop insurance. Our results demonstrate that a better understanding of co‐benefits and trade‐offs of different policy approaches can help decision‐makers choose the more effective, or at the very minimum, more benign interventions for implementation.  相似文献   

16.
Miombo and mopane woodlands are the dominant land cover in southern Africa. Ecosystem services from these woodlands support the livelihoods of 100 M rural people and 50 M urban dwellers, and others beyond the region. Provisioning services contribute $9 ± 2 billion yr−1 to rural livelihoods; 76% of energy used in the region is derived from woodlands; and traded woodfuels have an annual value of $780 M. Woodlands support much of the region''s agriculture through transfers of nutrients to fields and shifting cultivation. Woodlands store 18–24 PgC carbon, and harbour a unique and diverse flora and fauna that provides spiritual succour and attracts tourists. Longstanding processes that will impact service provision are the expansion of croplands (0.1 M km2; 2000–2014), harvesting of woodfuels (93 M tonnes yr−1) and changing access arrangements. Novel, exogenous changes include large-scale land acquisitions (0.07 M km2; 2000–2015), climate change and rising CO2. The net ecological response to these changes is poorly constrained, as they act in different directions, and differentially on trees and grasses, leading to uncertainty in future service provision. Land-use change and socio-political dynamics are likely to be dominant forces of change in the short term, but important land-use dynamics remain unquantified.This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’.  相似文献   

17.
The food chain dynamics of the edible mussel Mytilus edulis L., the American oyster Crassostrea virginica (Gmelin) and the hard clam Mercenaria mercenaria (L.) were investigated in large experimental tanks with flowing, filtered sea water and controlled addition of phytoplankton. The feeding rate of the mussel (5.36 μg carbon removed/l/g C animal was higher than that of the oyster (3.92) and clam (3.03) but the ecological efficiencies (net production/ingested food) × 100 of the clam (23.69 %) and the oyster (18.38 %) were higher than that of the mussel (10.01 %).The food chain efficiencies (net production/available food) were lower than the ecological efficiencies, suggesting under-exploitation of the available food. The clam, although having a lower feeding rate, was more efficient in utilizing the food it filtered and so showed the highest net production.The rates (μg-at/l/g C animal) of regeneration of nutrients, especially total inorganic nitrogen (mussel, 2.1723 × 10?3; oyster, 7.4270 × 10?3; and clam, 8.1750 × 10?3) along with reported high biodeposition rates of bivalves suggest that multi-species aquaculture systems would be more efficient and productive than one-species systems.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号