首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yan F  Chen L  Tang Q  Wang R 《Bioconjugate chemistry》2004,15(5):1030-1036
A heterobifunctional photocleavable cross-linker based on an o-nitrobenzyl ester moiety was synthesized. The cross-linker has N-hydroxysuccinimidyl and disulfide groups attached at each end and thus can anchor a protein to a gold-coated substrate surface. Steady-state spectroscopic studies suggest that the cross-linker undergoes a clean C-O fragmentation upon irradiation with a quantum yield of 0.1. Consequently, immobilized proteins (such as avidin or antibodies) on a substrate surface can be released efficiently (>95%) under UV irradiation (lambda > 300 nm) without degrading the protein functionality. We also demonstrated protein delivery via bioconjugation of protein molecules to a gold-coated atomic-force microscope (AFM) tip. When the proteins are photoreleased from the AFM tip, they are delivered to the substrate surface as protein clusters of uniform size. This has been confirmed using both AFM and fluorescence microscopy. The application of bioconjugation in this study opens a new avenue for tunable surface modification and controllable protein delivery in studies of biological systems on the nanometer scale.  相似文献   

2.
Cross-linking combined with mass spectrometry is an emerging approach for studying protein structure and protein-protein interactions. However, unambiguous mass spectrometric identification of cross-linked peptides derived from proteolytically digested cross-linked proteins is still challenging. Here we describe the use of a novel cross-linker, bimane bisthiopropionic acid N-succinimidyl ester (BiPS), that overcomes many of the challenges associated with other cross-linking reagents. BiPS is distinguished from other cross-linkers by a unique combination of properties: it is photocleavable, fluorescent, homobifunctional, amine-reactive, and isotopically coded. As demonstrated with a model protein complex, RNase S, the fluorescent moiety of BiPS allows for sensitive and specific monitoring of the different cross-linking steps, including detection and isolation of cross-linked proteins by gel electrophoresis, determination of in-gel digestion completion, and fluorescence-based separation of cross-linked peptides by HPLC. The isotopic coding of BiPS results in characteristic ion signal "doublets" in mass spectra, thereby permitting ready detection of cross-linker-containing peptides. Under MALDI-MS conditions, partial photocleavage of the cross-linker occurs, releasing the cross-linked peptides. This allows differentiation between dead-end, intra-, and interpeptide cross-links based on losses of specific mass fragments. It also allows the use of the isotope doublets as mass spectrometric "signatures." A software program was developed that permits automatic cross-link identification and assignment of the cross-link type. Furthermore photocleavage of BiPS assists in cross-link identification by allowing separate tandem mass spectrometry sequencing of each peptide comprising the original cross-link. By combining the use of BiPS with MS, we have provided the first direct evidence for the docking site of a phosphorylated G-protein-coupled receptor C terminus on the multifunctional adaptor protein beta-arrestin, clearly demonstrating the broad potential and application of this novel cross-linker in structural and cellular biology.  相似文献   

3.
An efficient method was developed to stretch DNA molecules on an atomically flat surface for AFM imaging. This method involves anchoring DNA molecules from their 5' ends to amino silanized mica surfaces. N-Succinimidyl6-[3'-(2-pyridyldithio) propionamido]hexanoate (LC-SPDP), a heterobifunctional cross-linker with a flexible spacer arm was used for this purpose. Immobilization was carried out by introducing a thiol group to the 5' end of DNA by PCR. Thiolated molecules were then reacted with the cross linker to conjugate with its 2-pyridyl disulphide group via sulfhydryl exchange. The resulting complex was deposited on amino silanized mica where NHS-ester moiety of the cross linker reacted with the primary amino group on the surface. Samples were washed by a current of water and dried by an air jet in one direction parallel to the surface. DNA molecules were fully stretched in one direction on imaging them by AFM.  相似文献   

4.
Bai X  Kim S  Li Z  Turro NJ  Ju J 《Nucleic acids research》2004,32(2):535-541
We report here the design, synthesis and evaluation of a novel photocleavable (PC) biotinylated nucleotide analog, dUTP-PC-Biotin, for DNA polymerase extension reaction to isolate DNA products for mass spectrometry (MS) analysis. This nucleotide analog has a biotin moiety attached to the 5-position of 2′-deoxyribouridine 5′-triphosphate via a photocleavable 2-nitrobenzyl linker. We have demonstrated that dUTP-PC-Biotin can be faithfully incorporated by the DNA polymerase Thermo Sequenase into the growing DNA strand in a DNA polymerase extension reaction and that its incorporation does not hinder the addition of the subsequent nucleotide. Therefore, the DNA extension fragments generated by using the dUTP-PC-Biotin can be efficiently isolated by a streptavidin-coated surface and recovered by near-UV light irradiation at room temperature in mild condition for further analysis without using any chemicals or heat. Single and multiple primer extension reactions were performed using the dUTP-PC-Biotin to generate DNA products for MALDI-TOF MS analysis. Such nucleotide analogs that carry a biotin and a photocleavable linker will allow the isolation and purification of DNA products under mild conditions for MS-based genetic analysis by DNA sequencing or multiplex single nucleotide polymorphism (SNP) detection. Furthermore, these nucleotide analogs should also be useful in isolating DNA–protein complexes under non-denaturing conditions.  相似文献   

5.
An efficient method was developed to stretch DNA molecules on an atomically flat surface for AFM imaging. This method involves anchoring DNA molecules from their 5' ends to amino silanized mica surfaces. N-Succinimidyl6-[3'-(2-pyridyldithio) propionamido]hexanoate (LC-SPDP), a heterobifunctional cross-linker with a flexible spacer arm was used for this purpose. The immobilization process was carried out by introducing a thiol group to the 5' end of DNA by PCR. Thiolated molecules were then reacted with the cross linker to conjugate with its 2-pyridyl disulphide group via sulfhydryl exchange. The resulting complex was deposited on amino silanized mica where NHS-ester moiety of the cross linker reacted with the primary amino group on the surface. Samples were washed by a current of water and dried by an air jet in one direction parallel to the surface. DNA molecules were shown to be fully stretched in one direction on imaging them by AFM.  相似文献   

6.
The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH(2) groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH(2) groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker ("acetal-PEG-NHS") which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1-10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker ("aldehyde-PEG-NHS") to adjacent NH(2) groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be functionalized with an ethylene diamine derivative of ATP which showed specific interaction with mitochondrial uncoupling protein 1 (UCP1) that had been purified and reconstituted in a mica-supported planar lipid bilayer.  相似文献   

7.
In vitro display technologies, such as mRNA display and DNA display are powerful tools to screen peptides and proteins with desired functions from combinatorial libraries in the fields of directed protein evolution and proteomics. When screening combinatorial libraries of polypeptides (phenotype), each of which is displayed on its gene (genotype), the problem remains, how best to recover the genotype moiety whose phenotype moiety has bound to the desired target. Here, we describe the use of a photocleavable 2-nitrobenzyl linker between genotype (DNA or mRNA) and phenotype (protein) in our DNA and mRNA display systems. This technique allows rapid and efficient recovery of selected nucleic acids by simple UV irradiation at 4 degrees C for 15 min. Further, we confirmed that the photocleavable DNA display and mRNA display systems are useful for in vitro selection of epitope peptides, recombinant antibodies, and drug-receptor interactions. Thus, these improved methods should be useful in therapeutics and diagnostics, e.g., for screening high-affinity binders, such as enzyme inhibitors and recombinant antibodies from random peptide and antibody libraries, as well as for screening drug-protein interactions from cDNA libraries.  相似文献   

8.
9.
We have demonstrated that the electrostatic stretch-and-positioning method is useful for the analysis of a long DNA molecule by means of atomic force microscopy (AFM). DNA molecules were stretched parallel to the field line, and immobilized onto the aluminum electrodes patterned on a glass plate. Through AFM observation, we confirmed the immobilization of individual DNA molecules, not aggregate.  相似文献   

10.
S Ohnishi  M Murata    M Hato 《Biophysical journal》1998,74(1):455-465
We have investigated the morphology and surface forces of protein A adsorbed on mica surface in the protein solutions of various concentrations. The force-distance curves, measured with a surface force apparatus (SFA), were interpreted in terms of two different regimens: a "large-distance" regimen in which an electrostatic double-layer force dominates, and an "adsorbed layer" regimen in which a force of steric origin dominates. To further clarify the forces of steric origin, the surface morphology of the adsorbed protein layer was investigated with an atomic force microscope (AFM) because the steric repulsive forces are strongly affected by the adsorption mode of protein A molecules on mica. At lower protein concentrations (2 ppm, 10 ppm), protein A molecules were adsorbed "side-on" parallel to the mica surfaces, forming a monolayer of approximately 2.5 nm. AFM images at higher concentrations (30 ppm, 100 ppm) showed protruding structures over the monolayer, which revealed that the adsorbed protein A molecules had one end oriented into the solution, with the remainder of each molecule adsorbed side-on to the mica surface. These extending ends of protein A overlapped each other and formed a "quasi-double layer" over the mica surface. These AFM images proved the existence of a monolayer of protein A molecules at low concentrations and a "quasi-double layer" with occasional protrusions at high concentrations, which were consistent with the adsorption mode observed in the force-distance curves.  相似文献   

11.
Functionalization of atomic force microscope (AFM) tips with bioligands converts them into monomolecular biosensors which can detect complementary receptor molecules on the sample surface. Flexible PEG tethers are preferred because the bioligand can freely reorient and locally palpate the sample surface while the AFM tip is moved along. In a well-established coupling scheme [Hinterdorfer et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 3477-3481], a heterobifunctional PEG linker is used to tether thiol-containing bioligands to amino-functionalized AFM tips. Since antibodies contain no free thiol residues, prederivatization with N-succinimidyl 3-(acetylthio)propionate (SATP) is needed which causes a relatively high demand for antibody. The present study offers a convenient alternative with minimal protein consumption (e.g., 5 microg of protein in 50 microL of buffer) and no prederivatization, using a new heterobifunctional cross-linker that has two different amino-reactive functions. One end is an activated carboxyl (N-hydroxysuccinimide ester) which is much faster to react with the amino groups of the tips than the benzaldehyde function on its other end. The reactivity of the latter is sufficient, however, to covalently bind lysine residues of proteins via Schiff base formation. The method has been critically examined, using biotinylated IgG as bioligand on the tip and mica-bound avidin as complementary receptor. These experiments were well reproduced on amino-functionalized silicon nitride chips where the number of specifically bound IgG molecules (approximately 2000 per microm2) was estimated from the amount of specifically bound ExtrAvidin-peroxidase conjugate. For a bioscientific application, human rhinovirus particles were tethered to the tip, very-low-density lipoprotein receptor fragments were tethered to mica, and the specific interaction was studied by force microscopy.  相似文献   

12.
Direct haplotyping of kilobase-size DNA using carbon nanotube probes   总被引:12,自引:0,他引:12  
We have implemented a method for multiplexed detection of polymorphic sites and direct determination of haplotypes in 10-kilobase-size DNA fragments using single-walled carbon nanotube (SWNT) atomic force microscopy (AFM) probes. Labeled oligonucleotides are hybridized specifically to complementary target sequences in template DNA, and the positions of the tagged sequences are detected by direct SWNT tip imaging. We demonstrated this concept by detecting streptavidin and IRD800 labels at two different sequences in M13mp18. Our approach also permits haplotype determination from simple visual inspection of AFM images of individual DNA molecules, which we have done on UGT1A7, a gene under study as a cancer risk factor. The haplotypes of individuals heterozygous at two critical loci, which together influence cancer risk, can be easily and directly distinguished from AFM images. The application of this technique to haplotyping in population-based genetic disease studies and other genomic screening problems is discussed.  相似文献   

13.
Short interfering RNAs (siRNAs) and microRNAs (miRNAs) have been widely used in mammalian tissue culture and model organisms to selectively silence genes of interest. One limitation of this technology is the lack of precise external control over the gene-silencing event. The use of photocleavable protecting groups installed on nucleobases is a promising strategy to circumvent this limitation, providing high spatial and temporal control over siRNA or miRNA activation. Here, we have designed, synthesized and site-specifically incorporated new photocaged guanosine and uridine RNA phosphoramidites into short RNA duplexes. We demonstrated the applicability of these photocaged siRNAs in the light-regulation of the expression of an exogenous green fluorescent protein reporter gene and an endogenous target gene, the mitosis motor protein, Eg5. Two different approaches were investigated with the caged RNA molecules: the light-regulation of catalytic RNA cleavage by RISC and the light-regulation of seed region recognition. The ability to regulate both functions with light enables the application of this optochemical methodology to a wide range of small regulatory RNA molecules.  相似文献   

14.
Herein, we report the development of a photocleavable analog of AP20187, a cell-permeable molecule used to dimerize FK506-binding protein (FKBP) fusion proteins and initiate biological signaling cascades and gene expression or disrupt protein-protein interactions. We demonstrate that this reagent permits the unique ability to rapidly and specifically antagonize a molecular interaction in vitro and follow a biological process due to this acute antagonism (e.g. endosome dispersion) and to release the trap upon photocleavage to follow the cell''s return to homeostasis. In addition, this photocleavable AP20187 analog can be used in other systems where the dimerization of FKBP has been used to initiate signaling pathways, offering the ability to correlate the duration of a signaling event and a cellular response.  相似文献   

15.
A chemoselective alkylation method is described for the isolation and subsequent identification of thiophosphorylated peptides/proteins. The method involves thiophosphorylation of proteins using adenosine 5'-O-(thiotriphosphate) (ATPgammaS) followed by selective in situ alkylation of the newly thiophosphorylated proteins resulting in a stable covalent bond. The chemoselective alkylation exploits the relatively high nucleophilicity at low pH of the sulfur in thiophosphate residues, whereas the nucleophilicities of phosphates, amines, and other functionality of amino acids are negligible or significantly suppressed. Modified alkylation reagents linked to biotin or solid supports (e.g. glass or Sepharose beads) with or without a photocleavable linker facilitate the isolation of the thiophosphorylated peptide/proteins. This approach is demonstrated through the localization of phosphorylation sites on myosin regulatory light chain. We anticipate that this technique will be useful for isolation and subsequent identification of newly thiophosphorylated proteins, produced either in vivo or in vitro, thus facilitating the dissection of protein phosphorylation networks.  相似文献   

16.
We have used in situ tapping mode atomic force microscopy (AFM) to study the structural morphology of two fragments of the influenza hemagglutinin protein bound to supported bilayers. The two proteins that we studied are the bromelain-cleaved hemagglutinin (BHA), corresponding to the full ectodomain of the hemagglutinin protein, and FHA2, the 127 amino acid N-terminal fragment of the HA2 subunit of the hemagglutinin protein. While BHA is water soluble at neutral pH and is known to bind to membranes via specific interactions with a viral receptor, FHA2 can only be solubilized in water with an appropriate detergent. Furthermore, FHA2 is known to readily bind to membranes at neutral pH in the absence of a receptor. Our in situ AFM studies demonstrated that, when bound to supported bilayers at neutral pH, both these proteins are self-assembled as single trimeric molecules. In situ acidification resulted in further lateral association of the FHA2 without a large perturbation of the bilayer. In contrast, BHA remained largely unaffected by acidification, except in areas of exposed mica where it is aggregated. Remarkably, these results are consistent with previous observations that FHA2 promotes membrane fusion while BHA only induces liposome leakage at low pH. The results presented here are the first example of in situ imaging of the ectodomain of a viral envelope protein allowing characterization of the real-time self-assembly of a membrane fusion protein.  相似文献   

17.

Background

Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin, a muscle cytoskeletal protein. Utrophin is a homologue of dystrophin that can functionally compensate for its absence when expressed at increased levels in the myofibre, as shown by studies in dystrophin-deficient mice. Utrophin upregulation is therefore a promising therapeutic approach for DMD. The use of a small, drug-like molecule to achieve utrophin upregulation offers obvious advantages in terms of delivery and bioavailability. Furthermore, much of the time and expense involved in the development of a new drug can be eliminated by screening molecules that are already approved for clinical use.

Methodology/Principal Findings

We developed and validated a cell-based, high-throughput screening assay for utrophin promoter activation, and used it to screen the Prestwick Chemical Library of marketed drugs and natural compounds. Initial screening produced 20 hit molecules, 14 of which exhibited dose-dependent activation of the utrophin promoter and were confirmed as hits. Independent validation demonstrated that one of these compounds, nabumetone, is able to upregulate endogenous utrophin mRNA and protein, in C2C12 muscle cells.

Conclusions/Significance

We have developed a cell-based, high-throughput screening utrophin promoter assay. Using this assay, we identified and validated a utrophin promoter-activating drug, nabumetone, for which pharmacokinetics and safety in humans are already well described, and which represents a lead compound for utrophin upregulation as a therapy for DMD.  相似文献   

18.
We investigated mechanical unfolding of Borrelia burgdorferi outer surface protein A (OspA), a Lyme disease antigen containing a unique single-layer beta-sheet, with atomic force microscopy (AFM). We mechanically stretched a monomeric unit, rather than a tandem repeat, by pulling it from its N and C-terminal residues without using intervening polymer as a spacer. We detected two peaks in the force-extension profile before the final rupture of a fully extended polypeptide, which we interpreted as unfolding of multiple substructures in OspA. The double-peaked unfolding curves are consistent with results of previous thermodynamic studies showing two cooperative units in OspA. The mechanical unfolding processes were reversible, and the two substructures refolded within one second. Mutations near the boundary of the two thermodynamic cooperative units reduced the height of the first unfolding peak to undetectable levels and marginally affected the second one, indicating that the boundary between the two mechanical substructures is related to that previously assigned between the thermodynamic cooperative units. Based on a "worm-like chain" analysis of our AFM data, we propose a model for mechanical unfolding of OspA, where nearly a half of the chain is stretched with minimal resistive force, followed by sequential breakdown of C-terminal and N-terminal substructures. Based on these results, we discuss similarities and differences between mechanical and thermodynamic unfolding reactions of OspA. This work demonstrates that AFM study of monomeric proteins can elucidate details of the intramolecular mechanics of protein substructures.  相似文献   

19.
Robust methods for highly parallel, quantitative analysis of cellular protein tyrosine kinase activities may provide tools critically needed to decipher oncogenic signaling, discover new targeted drugs, diagnose cancer and monitor patients. Here, we describe proof-of-principle for a novel protein kinase assay with the potential to help overcome these challenges. MALDI-TOF mass spectrometry provides an ideal tool for label-free multiplexed analysis of peptide phosphorylation, but is poorly matched to homogeneous assays and complex samples. Thus, we conjugated a common oligonucleotide tag to multiple peptide substrates, offering efficient capture from solution-phase kinase reactions by annealing to the complementary sequence tethered to PEG-passivated superparamagnetic microparticles. To enable reversible conjugation, we developed a novel bifunctional cross-linker allowing simple and efficient preparation of photocleavable peptide-oligonucleotide conjugates. After washing away contaminants and following photorelease, MALDI-TOF analysis yielded relative phosphorylation of each peptide with high sensitivity and specificity. Validating the hybridization-mediated multiplexed kinase assay, when three peptide substrate-oligonucleotide conjugates were mixed with the tyrosine kinase c-Abl and ATP, we readily observed their differential phosphorylation yet measured a common IC(50) for the Abl kinase inhibitor imatinib. This new assay enables analysis of protein kinase activities in a multiplexed format amenable to screening inhibitors against multiple kinases in parallel, an important capability for drug discovery and predictive diagnostics.  相似文献   

20.
The investigation of Protein A and antibody adsorption on surfaces in a biological environment is an important and fundamental step for increasing biosensor sensitivity and specificity. The atomic force microscope (AFM) is a powerful tool that is frequently used to characterize surfaces coated with a variety of molecules. We used AFM in conjunction with scanning electron microscopy to characterize the attachment of protein A and its subsequent binding to the antibody and Salmonella bacteria using a gold quartz crystal. The rms roughness of the base gold surface was determined to be approximately 1.30 nm. The average step height change between the solid gold and protein A layer was approximately 3.0 +/- 1.0 nm, while the average step height of the protein A with attached antibody was approximately 6.0 +/- 1.0 nm. We found that the antibodies did not completely cover the protein A layer, instead the attachment follows an island model. Salt crystals and water trapped under the protein A layer were also observed. The uneven adsorption of antibodies onto the biosensor surface might have led to a decrease in the sensitivity of the biosensor. The presence of salt crystals and water under the protein A layer may deteriorate the sensor specificity. In this report, we have discussed the application and characterization of protein A bound to antibodies which can be used to detect bacterial and viral pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号