首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GAP-43 is a presynaptic membrane phosphoprotein that has been implicated in both the development and the modulation of neural connections. The availability of cDNA clones for GAP-43 makes it possible to examine with greater precision its role in neuronal outgrowth and physiology. We used Northern blots and in situ hybridization with GAP-43 antisense RNA probes to show that GAP-43 is expressed selectively in associative regions of the adult brain. Immunocytochemical analyses showed alterations in the pattern of GAP-43 expression in the hippocampus during reactive synaptogenesis following lesions of the perforant pathway. Genetic intervention methodology was used to analyze the molecular nature of GAP-43 involvement in synaptic plasticity. GAP-43-transfected PC12 cells displayed an enhanced response to nerve growth factor, suggesting that GAP-43 may be directly involved in neurite extension and in the modulation of the neuronal response to extrinsic trophic factors. Studies of PC12 cell transfectants, in which the synthesis of GAP-43 was blocked by expression of GAP-43 antisense RNA, showed that evoked dopamine release was significantly attenuated in these cells. The use of gene transfer into neurons with the HSV-1 vector is presented as a method of analyzing the interaction of GAP-43 with signal transduction systems during neurotransmitter release.  相似文献   

2.
Substantial evidence has now been gathered for the involvement of B-50/GAP-43 in neuronal development and regeneration. The precise role of this protein, however, is still debated. In an earlier study, a linear correlation between NGF-induced neurite outgrowth and B-50/GAP-43 levels was observed in PC12 cells. To establish the involvement of B-50/GAP-43 expression in neurite outgrowth in these cells, we interfered with the expression by antisense oligomers and measured the outgrowth. In the present study, a B-50/GAP-43 antisense 5'-oligomer interfered both with the NGF-induced increase in B-50/GAP-43 and with neurite outgrowth, whereas an antisense 3'-oligomer was ineffective. We conclude, that in PC12 cells under normal conditions B-50/GAP-43 expression and neurite outgrowth are or become coupled upon NGF-induction, in contrast to the situation in PC12 clones with no or very low B-50/GAP-43 expression.  相似文献   

3.
The finding that the neurotransmitter dopamine induces apoptosis in neurons implies the existence of a cellular mechanism by which dopaminergic neurons protect themselves from dopamine-induced apoptosis. By profiling the expression of a number of genes in differentiating PC12 cells which exhibit elevated levels of dopamine biosynthesis, we found that expression of glutathione S-transferase class Pi (GSTp) mRNA was selectively up-regulated. Interestingly, dopamine added to the culture medium of PC12 cells also augmented their expression of GSTp mRNA. Suppression of GSTp expression by transfection of its antisense expression vector augmented dopamine-induced apoptosis of PC12 cells. Conversely, overexpression of GSTp made the resultant PC12 transfectants highly resistant to dopamine-induced apoptosis. Transfection of the antisense or sense GSTp expression vectors also resulted in corresponding augmentation or suppression of dopamine-induced activation of cell-associated Jun-N-terminal kinase (JNK), which has been suggested to mediate dopamine-induced apoptosis in neuronal cells. These results indicate that GSTp is a dopamine-inducible suppressor of dopamine-induced apoptosis in PC12 cells, and suggest that this activity is exerted through inhibition of JNK activity.  相似文献   

4.
The present study examined the role of phospholipase D2 (PLD2) in the regulation of depolarization-induced neurite outgrowth and the expression of growth-associated protein-43 (GAP-43) and synapsin I in rat pheochromocytoma (PC12) cells. Depolarization of PC12 cells with 50 mmol/L KCl increased neurite outgrowth and elevated mRNA and protein expression of GAP-43 and synapsin I. These increases were suppressed by inhibition of Ca2+-calmodulin-dependent protein kinase II (CaMKII), PLD, or mitogen-activated protein kinase kinase (MEK). Knockdown of PLD2 by small interfering RNA (siRNA) suppressed the depolarization-induced neurite outgrowth, and the increase in GAP-43 and synapsin I expression. Depolarization evoked a Ca2+ rise that activated various signaling enzymes and the cAMP response element-binding protein (CREB). Silencing CaMKIIδ by siRNA blocked KCl-induced phosphorylation of proline-rich protein tyrosine kinase 2 (Pyk2), Src kinase, and extracellular signal-regulated kinase (ERK). Inhibition of Src or MEK abolished phosphorylation of ERK and CREB. Furthermore, phosphorylation of Pyk2, ERK, and CREB was suppressed by the PLD inhibitor, 1-butanol and transfection of PLD2 siRNA, whereas it was enhanced by over-expression of wild-type PLD2. Depolarization-induced PLD2 activation was suppressed by CaMKII and Src inhibitors, but not by MEK or protein kinase A inhibitors. These results suggest that the signaling pathway of depolarization-induced PLD2 activation was downstream of CaMKIIδ and Src, and upstream of Pyk2(Y881) and ERK/CREB, but independent of the protein kinase A. This is the first demonstration that PLD2 activation is involved in GAP-43 and synapsin I expression during depolarization-induced neuronal differentiation in PC12 cells.  相似文献   

5.
6.
The membrane protein syntaxin (originally named HPC-1) is involved in vesicle trafficking and required for neurotransmitter release at nerve terminals. The presence of syntaxin on target membranes is hypothesized to confer specificity to targeting and fusion via interactions with complementary vesicle-associated proteins. To elucidate the function of syntaxin 1A in exocytosis, HPC-1/syntaxin 1A-reduced PC12h cells (PC12h/Deltasyx) that were stably transfected with a plasmid for antisense syntaxin 1A expression were constructed. Depolarizing stimulation of PC12h/Deltasyx enhanced dopamine release, compared with PC12h. There was a strong inverse correlation between syntaxin 1A protein expression and enhancement of dopamine release. Reduction of syntaxin 1A had no effect on increase of the cytoplasmic free Ca2+ concentration by depolarized stimulation. Moreover, PC12h/Deltasyx clones similarly enhanced of exocytosis by native secretagogues. These results indicate that syntaxin 1A has more than one function in exocytosis.  相似文献   

7.
The coupling between depolarization-induced calcium entry and neurotransmitter release was studied in rat brain neurons in culture. The endogenous dopamine content of the cells was determined by high performance liquid chromatography utilizing electrochemical detection. The amount of dopamine in unstimulated cells was found to be about 16 ng/mg of protein. Depolarization of the neurons by elevated K+ caused a Ca2+-dependent release of dopamine from the cells. Following 1 min of depolarization, the cellular dopamine content and the amount of [3H]dopamine in cells preloaded with the radioactive transmitter were reduced by 35%. The release of [3H]dopamine by the neurons was measured at 1.5-6-s intervals by a novel rapid dipping technique. Depolarization in the presence of Ca2+ (1.8 mM) enhanced the rate of neurotransmitter release by 90-fold (0.072 +/- 0.003 s-1) over the basal release in the presence of Ca2+. The evoked release consisted of a major rapidly terminating phase (t1/2 = 9.6 s) which comprised about 40% of the neurotransmitter content of the cells and a subsequent slower efflux (t1/2 = 575 s) which was observed during following prolonged depolarization. Predepolarization of the cells in the absence of extracellular Ca2+ did not affect the kinetics of the evoked release. The fast evoked release could be re-elicited in the cells after 20 min "rest" in reference low K+ buffer. The effects of varying the extracellular Ca2+ concentrations on the kinetic parameters of the evoked release were measured. The amount of neurotransmitter released during the fast kinetic phase was very sensitive to the external Ca2+ (from 0% in the absence of Ca2+ to 40% of the neurotransmitter content at Ca2+ 0.3 mM). The rate constant of the fast release did not depend on the extracellular Ca2+, whereas the rate constant of the slow release increased from 0.0004 +/- 0.0001 s-1 at 0.4 mM Ca2+ to 0.0012 +/- 0.0002 s-1 at 0.8 mM Ca2+. The fast evoked release was inhibited by verapamil in a concentration-dependent manner. By contrast, verapamil enhanced the basal and the slow release independent of the presence of Ca2+. Both fast and slow phases of the evoked release were blocked by Co2+. Addition of Co2+ within the first 6 s after the onset of depolarization inhibited the fast release but failed to do so when added later on.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The RNA-binding protein HuD binds to a regulatory element in the 3' untranslated region (3' UTR) of the GAP-43 mRNA. To investigate the functional significance of this interaction, we generated PC12 cell lines in which HuD levels were controlled by transfection with either antisense (pDuH) or sense (pcHuD) constructs. pDuH-transfected cells contained reduced amounts of GAP-43 protein and mRNA, and these levels remained low even after nerve growth factor (NGF) stimulation, a treatment that is normally associated with protein kinase C (PKC)-dependent stabilization of the GAP-43 mRNA and neuronal differentiation. Analysis of GAP-43 mRNA stability demonstrated that the mRNA had a shorter half-life in these cells. In agreement with their deficient GAP-43 expression, pDuH cells failed to grow neurites in the presence of NGF or phorbol esters. These cells, however, exhibited normal neurite outgrowth when exposed to dibutyryl-cAMP, an agent that induces outgrowth independently from GAP-43. We observed opposite effects in pcHuD-transfected cells. The GAP-43 mRNA was stabilized in these cells, leading to an increase in the levels of the GAP-43 mRNA and protein. pcHuD cells were also found to grow short spontaneous neurites, a process that required the presence of GAP-43. In conclusion, our results suggest that HuD plays a critical role in PKC-mediated neurite outgrowth in PC12 cells and that this protein does so primarily by promoting the stabilization of the GAP-43 mRNA.  相似文献   

9.
Evidence has indicated that M2 macrophages promote the progression of cancers, but few focus on the ability of M2 macrophage‐derived exosomes in pancreatic cancer (PC). This study aims to explore how M2 macrophages affect malignant phenotypes of PC through regulating long non‐coding RNA SET‐binding factor 2 antisense RNA 1 (lncRNA SBF2‐AS1)/microRNA‐122‐5p (miR‐122‐5p)/X‐linked inhibitor of apoptosis protein (XIAP) axis. THP‐1 cells were transformed into M1 macrophages by lipopolysaccharide and interferon‐γ treatment, and into M2 macrophages after interleukin‐4 treatment. The PANC‐1 PC cell line with the largest lncRNA SBF2‐AS1 expression was selected, and M2 macrophage‐derived exosomes were isolated and identified. A number of assays were applied for the examination of lncRNA SBF2‐AS1 expression, PC cell biological functions and subcellular localization of lncRNA SBF2‐AS1. XIAP expression was detected, along with the interaction among lncRNA SBF2‐AS1, miR‐122‐5p and XIAP. M2 macrophage exosomal lncRNA SBF2‐AS1 expression's effects on the tumorigenic ability of PANC‐1 cells in nude mice were also investigated. M2 macrophage‐derived exosomes promoted progression of PC cells. Overexpressed lncRNA SBF2‐AS1 promoted progression of PC cells. LncRNA SBF2‐AS1 was found to act as a competing endogenous RNA to repress miR‐122‐5p and up‐regulate XIAP. Constrained lncRNA SBF2‐AS1 in M2 macrophage‐derived exosomes contributed to restraining tumorigenic ability of PC cells. Collectively, our study reveals that constrained lncRNA SBF2‐AS1 in M2 macrophage‐derived exosomes increases miR‐122‐5p expression to restrain XIAP expression, which further inhibits PC progression.  相似文献   

10.
Acid-sensing ion channels (ASICs) have been reported to play a role in the neuronal dopamine pathway, but the exact role in neurotransmitter release remains elusive. Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line, which can release monoamine neurotransmitters. In this study, the expression of ASICs was identified in SH-SY5Y cells to further explore the role of ASICs in vesicular release stimulated by acid. We gathered evidence that ASICs could be detected in SH-SY5Y cells. In whole cell patch-clamp recording, a rapid decrease in extracellular pH evoked inward currents, which were reversibly inhibited by 100 μM amiloride. The currents were pH dependent, with a pH of half-maximal activation (pH(0.5)) of 6.01 ± 0.04. Furthermore, in calcium imaging and FM 1-43 dye labeling, it was shown that extracellular protons increased intracellular calcium levels and vesicular release in SH-SY5Y cells, which was attenuated by PcTx1 and amiloride. Interestingly, N-type calcium channel blockers inhibited the vesicular release induced by acidification. In conclusion, ASICs are functionally expressed in SH-SY5Y cells and involved in vesicular release stimulated by acidification. N-type calcium channels may be involved in the increase in vesicular release induced by acid. Our results provide a preliminary study on ASICs in SH-SY5Y cells and neurotransmitter release, which helps to further investigate the relationship between ASICs and dopaminergic neurons.  相似文献   

11.
An endocrine disruptor chemical, bisphenol-A (BPA), is reported to have several short-term actions in various tissues and/or cells; however, the mechanisms of these actions have not been fully elucidated. We investigated short-term actions evoked by BPA in pheochromocytoma PC12 cells. BPA elicited dopamine release in PC12 cells in a dose-dependent manner. A selective N-type calcium channel antagonist (omega-conotoxin GVIA) and a ryanodine receptor blocker (ryanodine) inhibited the BPA-induced dopamine release. The expression of ryanodine receptor mRNA was detected by RT-PCR in PC12 cells. Subsequently, in order to prove whether membrane receptors participate in BPA-evoked dopamine release, a guanine nucleotide-binding protein inhibitor [guanosine 5'-(beta-thio) diphosphate], cyclic AMP antagonist (Rp-cAMPS) or protein kinase A inhibitor (H7 or H89) was added to PC12 cells prior to BPA-treatment. All of these agents suppressed BPA-evoked dopamine release, indicating that multiple signaling pathways may be involved in BPA-evoked dopamine release in PC12 cells. In conclusion, we demonstrated that BPA induced dopamine release in a non-genomic manner through guanine nucleotide-binding protein and N-type calcium channels. These findings illustrate a novel function of BPA and suggest that exposure to BPA influences the function of dopaminergic neurons.  相似文献   

12.
Clonal rat pheochromocytoma (PC12) cells have been widely used to study the molecular mechanism of exocytosis. We have isolated variant PC12 subclones with deficiencies in stimulation-secretion coupling, by a single cell recloning, and investigated the defects. PC12-1G2 hardly released dopamine following high-K(+)-induced depolarization, but normal release was evoked by the Ca(2+)-ionophore, ionomycin. Fura-2 fluorometry indicated that a nicardipine-sensitive component of Ca(2+) influx was missing, suggesting that PC12-1G2 has defects in L-type Ca(2+) channel function. PC12-2B3 was not responsive to high-K(+)-induced depolarization and ionomycin, and voltage-dependent Ca(2+) entry was identical to that of the normal clone. Electron microscopy revealed that the number of vesicles adjacent or directly attached to the plasma membrane was decreased in PC12-2B3. The expression of presynaptic proteins was analyzed by immunoblotting using a panel of antibodies. Syntaxin 1, VAMP-2, SNAP-25, Munc18, Rab3C and Sec-6 were decreased compared to the control clone and that of synaptophysin was extremely low. PC12-D60 synthesized and released dopamine normally, but had almost lost its catecholamine-uptake activity. These results show that multiple PC12 cells variants are spontaneously generated, and that recloning can select PC12 subclones useful for the study of the molecular mechanisms of neurotransmitter release.  相似文献   

13.
Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells.  相似文献   

14.
Clonal rat pheochromocytoma (PC12) cells have been widely used to study the molecular mechanism of exocytosis. We have isolated variant PC12 subclones with deficiencies in stimulation–secretion coupling, by a single cell recloning, and investigated the defects. PC12-1G2 hardly released dopamine following high-K+-induced depolarization, but normal release was evoked by the Ca2+-ionophore, ionomycin. Fura-2 fluorometry indicated that a nicardipine-sensitive component of Ca2+ influx was missing, suggesting that PC12-1G2 has defects in L-type Ca2+ channel function. PC12-2B3 was not responsive to high-K+-induced depolarization and ionomycin, and voltage-dependent Ca2+ entry was identical to that of the normal clone. Electron microscopy revealed that the number of vesicles adjacent or directly attached to the plasma membrane was decreased in PC12-2B3. The expression of presynaptic proteins was analyzed by immunoblotting using a panel of antibodies. Syntaxin 1, VAMP-2, SNAP-25, Munc18, Rab3C and Sec-6 were decreased compared to the control clone and that of synaptophysin was extremely low. PC12-D60 synthesized and released dopamine normally, but had almost lost its catecholamine-uptake activity. These results show that multiple PC12 cells variants are spontaneously generated, and that recloning can select PC12 subclones useful for the study of the molecular mechanisms of neurotransmitter release.  相似文献   

15.
To investigate the molecular basis for GAP-43 function in axon outgrowth, we produced a mutant, GAP-43 (Ala41), whose interaction with calmodulin in vitro was unaffected by increasing Ca2+ concentrations, and stably transfected it into GAP-43-deficient PC12B cells. Several lines that expressed wild-type or mutant protein at levels that resembled endogenous GAP-43 expression in PC12 controls were subcloned and characterized. GAP-43 (Ala41) was significantly more extractable with Nonidet P-40 and less tightly associated with the membrane skeleton than the wild-type protein. Furthermore, GAP-43 (Ala41) expression by PC12B cells profoundly affected their phenotype: First, observation of living cells using video-enhanced microscopy revealed irregular plasma membranes with numerous blebs and protrusions and neurites that appeared thin and varicose. Second, both the cells' ability to remain attached to laminin substrates and the amount of α1β1 integrin expressed on the cell surface was significantly decreased. Finally, peripherin transport, which is abnormal in PC12B cells, could be rescued by transfection of wild-type GAP-43 but not the GAP-43 (Ala41) mutant. The phenotypic abnormalities resemble other cell types in which membrane skeleton/plasma membrane interactions have been functionally decoupled, and our results are consistent with the notion that these interactions may be abnormal in GAP-43 (Ala41)-expressing PC12B cells, either as a direct consequence of the mutation or arising secondarily to the altered availability of calmodulin in the growing neurite. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
In situ hybridization was combined with serotonin (5-hydroxytryptamine, 5-HT) or tyrosine hydroxylase immunocytochemistry and with Fluoro-Gold retrograde labeling of bulbo-spinal pathways in order to investigate the expression of GAP-43 mRNA in monoamine cell groups of the adult rat brain stem. Consistent with previous reports, GAP-43 mRNA was observed in serotonin and dopamine cell groups in the pons. In addition, GAP-43 expressing cells were observed in all the major monoamine cell groups in the medulla. Thus the B1, B2 and B3 serotonin cell groups all showed high GAP-43 expression and all contained many GAP-43 expressing serotonin cells with spinal cord projections. The A1, A2, A5 and A6 noradrenalin cell groups also showed high GAP-43 expression, although cells with spinal cord projections were largely restricted to the A5 group and A6 subcoeruleus region. In all areas, GAP-43 expressing cells with spinal cord projections were also observed which were not serotonergic or noradrenergic.  相似文献   

17.
18.
Depolarizing stimuli increase the release of transmitter substances from cultured PC12 pheochromocytoma cells and reaggregate cultures of mouse mesencephalic dopamine neurones. We measured the stimulated release of (3H) norepinephrine and (3H) dopamine from these systems respectively. In the cultured mouse dopaminergic neurones, several organic calcium channel blockers including nitrendipine, D-600, verapamil and diltiazem were unable to inhibit potassium-evoked transmitter release. However, release was blocked by 3 mM cobalt. The novel dihydropyridine calcium channel agonist BAY K8644 also had no effect on basal or evoked dopamine release. In contrast, BAY K8644 greatly stimulated the potassium-evoked release of (3H) norepinephrine from PC12 cells. The BAY K8644 enhanced release could be blocked by the dihydropyridine antagonist nitrendipine. These results indicate that while stimulus-secretion coupling in the PC12 cell line involves dihydropyridine sensitive calcium channels, this is not the case in primary cultured neurones.  相似文献   

19.
To examine the role of cyclic AMP in the process of catecholamine release experiments have been performed with cultures of PC12 pheochromocytoma cells. Elevated potassium (56 mM) and carbamylcholine (carbachol, 10(-4) M) cause rapid increases in cyclic AMP levels in the cultures that show a time course similar to that of evoked dopamine release. These secretogogue-induced increases in cyclic AMP levels are well correlated with release in terms of relative magnitude and calcium dependence. Forskolin (a direct activator of adenylate cyclase) causes dose-related increases in cyclic AMP levels in PC12 cell cultures that are synergistic with those caused by either elevated potassium or carbachol. At low concentrations forskolin significantly increases evoked release, whereas at higher concentrations it increases both spontaneous and evoked release. These results suggest that cyclic AMP may be involved in the process of dopamine release from PC12 cells in culture.  相似文献   

20.
Ribonucleotide reductase (RR) is a rate-limiting enzyme in DNA synthesis and repair. The enzyme consists of two dissimilar subunits, M1 and M2. It is known that the M2 subunit plays a role in tumorgenicity and metastasis. In this study, we transfected human oropharyngeal KB cancer cells with human RR M1 and M2 antisense cDNA expressed by an inducible vector system. The transfectants were double-selected with hygromycin and G418. The clones, designated KB-M1AS, KB-M2AS and KB-CAT, represented transfectant clones that contained M1 antisense cDNA, M2 antisense cDNA, and a CAT reporter gene, respectively. In a colony-forming assay, colony formation for the KB-M2AS clone decreased approximately 50% when M2 antisense mRNA expression was induced by isopropylthiogalactose (IPTG). However, the KB-M1AS clone revealed no significant inhibition under IPTG induction. RR enzyme activity, as measured by 14CDP reduction assay, revealed a 30% decrease in the IPTG-induced KB-M2AS clone relative to non-IPTG-induced samples at 144 hours. As shown by Northern blot, expression of the M2 antisense mRNA showed peaks at 48 hours and 144 hours after induction by IPTG. M2 antisense mRNA expression induced by IPTG was 33-fold greater than the uninduced control at 144 hours. Western blot analysis showed that the M2 subunit protein level decreased in the KB-M2AS clone beginning at 72 hours after induction and continued to decrease to 50% of the uninduced control at 144 hours, then showed a slight recovery at 168 hours. In conclusion, M2 antisense mRNA expression by an inducible system can effectively decrease RR M2 protein expression, reduce enzyme activity, and inhibit growth. Furthermore, this approach can be employed in future antisense investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号