首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a data set of protein translations associated with map positions in the human genome, we identified 1520 mapped highly conserved gene families. By comparing sharing of families between genomic windows, we identified 92 potentially duplicated blocks in the human genome containing 422 duplicated members of these families. Using branching order in the phylogenetic trees, we timed gene duplication events in these families relative to the primate-rodent divergence, the amniote-amphibian divergence, and the deuterostome-protostome divergence. The results showed similar patterns of gene duplication times within duplicated blocks and outside duplicated blocks. Both within and outside duplicated blocks, numerous duplications were timed prior to the deuterostome-protostome divergence, whereas others occurred after the amniote-amphibian divergence. Thus, neither gene duplication in general nor duplication of genomic blocks could be attributed entirely to polyploidization early in vertebrate history. The strongest signal in the data was a tendency for intrachromosomal duplications to be more recent than interchromosomal duplications, consistent with a model whereby tandem duplication-whether of single genes or of genomic blocks-may be followed by eventual separation of duplicates due to chromosomal rearrangements. The rate of separation of tandemly duplicated gene pairs onto separated chromosomes in the human lineage was estimated at 1.7 x 10(-9) per gene-pair per year.  相似文献   

2.
基因倍增研究进展   总被引:2,自引:0,他引:2  
李鸿健  谭军 《生命科学》2006,18(2):150-154
基因倍增是指DNA片段在基因组中复制出一个或更多的拷贝,这种DNA片段可以是一小段基因组序列、整条染色体,甚至是整个基因组。基因倍增是基因组进化最主要的驱动力之一,是产生具有新功能的基因和进化出新物种的主要原因之一。本文综述了脊椎动物、模式植物和酵母在进化过程中基因倍增研究领域的最新进展,并讨论了基因倍增研究的发展方向。  相似文献   

3.
Polyploidy events (polyploidization) followed by progressive loss of redundant genome components are a major feature of plant evolution, with new evidence suggesting that all flowering plants possess ancestral genome duplications. Furthermore, many of our most important crop plants have undergone additional, relatively recent, genome duplication events. Recent advances in DNA sequencing have made vast amounts of new genomic data available for many plants, including a range of important crop species with highly duplicated genomes. Along with assisting traditional forward genetics approaches to study gene function, this wealth of new sequence data facilitates extensive reverse genetics-based functional analyses. However, plants featuring high levels of genome duplication as a result of recent polyploidization pose additional challenges for reverse genetic analysis. Here we review reverse genetic analysis in such polyploid plants and highlight key challenges.  相似文献   

4.
Detection of tandem duplications and implications for linkage analysis.   总被引:1,自引:1,他引:0  
The first demonstration of an autosomal dominant human disease caused by segmental trisomy came in 1991 for Charcot-Marie-Tooth disease type 1A (CMT1A). For this disorder, the segmental trisomy is due to a large tandem duplication of 1.5 Mb of DNA located on chromosome 17p11.2-p12. The search for the CMT1A disease gene was misdirected and impeded because some chromosome 17 genetic markers that are linked to CMT1A lie within this duplication. To better understand how such a duplication might affect genetic analyses in the context of disease gene mapping, we studied the effects of marker duplication on transmission probabilities of marker alleles, on linkage analysis of an autosomal dominant disease, and on tests of linkage homogeneity. We demonstrate that the undetected presence of a duplication distorts transmission ratios, hampers fine localization of the disease gene, and increases false evidence of linkage heterogeneity. In addition, we devised a likelihood-based method for detecting the presence of a tandemly duplicated marker when one is suspected. We tested our methods through computer simulations and on CMT1A pedigrees genotyped at several chromosome 17 markers. On the simulated data, our method detected 96% of duplicated markers (with a false-positive rate of 5%). On the CMT1A data our method successfully identified two of three loci that are duplicated (with no false positives). This method could be used to identify duplicated markers in other regions of the genome and could be used to delineate the extent of duplications similar to that involved in CMT1A.  相似文献   

5.

   

Understanding the evolutionary plasticity of the genome requires a global, comparative approach in which genetic events are considered both in a phylogenetic framework and with regard to population genetics and environmental variables. In the mechanisms that generate adaptive and non-adaptive changes in genomes, segmental duplications (duplication of individual genes or genomic regions) and polyploidization (whole genome duplications) are well-known driving forces. The probability of fixation and maintenance of duplicates depends on many variables, including population sizes and selection regimes experienced by the corresponding genes: a combination of stochastic and adaptive mechanisms has shaped all genomes. A survey of experimental work shows that the distinction made between fixation and maintenance of duplicates still needs to be conceptualized and mathematically modeled. Here we review the mechanisms that increase or decrease the probability of fixation or maintenance of duplicated genes, and examine the outcome of these events on the adaptation of the organisms.  相似文献   

6.
Duplicated genes produce genetic variation that can influence the evolution of genomes and phenotypes. In most cases, for a duplicated gene to contribute to evolutionary novelty it must survive the early stages of divergence from its paralog without becoming a pseudogene. I examined the evolutionary dynamics of recently duplicated genes in the Drosophila pseudoobscura genome to understand the factors affecting these early stages of evolution. Paralogs located in closer proximity have higher sequence identity. This suggests that gene conversion occurs more often between duplications in close proximity or that there is more genetic independence between distant paralogs. Partially duplicated genes have a higher likelihood of pseudogenization than completely duplicated genes, but no single factor significantly contributes to the selective constraints on a completely duplicated gene. However, DNA-based duplications and duplications within chromosome arms tend to produce longer duplication tracts than retroposed and inter-arm duplications, and longer duplication tracts are more likely to contain a completely duplicated gene. Therefore, the relative position of paralogs and the mechanism of duplication indirectly affect whether a duplicated gene is retained or pseudogenized. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function.

Methodology/Principal Findings

To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures.

Conclusion

These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.  相似文献   

8.
Genome duplications may have played a role in the early stages of vertebrate evolution, near the time of divergence of the lamprey lineage. Additional genome duplication, specifically in ray-finned fish, may have occurred before the divergence of the teleosts. The common carp (Cyprinus carpio) has been considered tetraploid because of its chromosome number (2n = 100) and its high DNA content. We studied variation using 59 microsatellite primer pairs to better understand the ploidy level of the common carp. Based on the number of PCR amplicons per individual, about 60% of these primer pairs are estimated to amplify duplicates. Segregation patterns in families suggested a partially duplicated genome structure and disomic inheritance. This could suggest that the common carp is tetraploid and that polyploidy occurred by hybridization (allotetraploidy). From sequences of microsatellite flanking regions, we estimated the difference per base between pairs of alleles and between pairs of paralogs. The distribution of differences between paralogs had two distinct modes suggesting one whole-genome duplication and a more recent wave of segmental duplications. The genome duplication was estimated to have occurred about 12 MYA, with the segmental duplications occurring between 2.3 and 6.8 MYA. At 12 MYA, this would be one of the most recent genome duplications among vertebrates. Phylogenetic analysis of several cyprinid species suggests an evolutionary model for this tetraploidization, with a role for polyploidization in speciation and diversification.  相似文献   

9.
We used phylogenetic analyses of protein families containing two or more pairs of orthologues in the genomes of human and pufferfish (Takifugu rubripes) to test the hypothesis that these sequences show a strong signal of polyploidization events hypothesized to have occurred early in vertebrate history. In order to test for evidence of two distinct rounds of polyploidization (the 2R hypothesis), we compared the pattern of amino acid sequence divergence of proteins encoded by genes duplicated just prior to the most recent common ancestor of human and pufferfish with that of proteins encoded genes duplicated earlier. These sequence divergences were statistically indistinguishable, contrary to the prediction of the 2R hypothesis. The variance of amino acid sequence divergences between paralogues was significantly greater than expected from that of orthologues in the same families. Estimation of gene duplication times assuming a molecular clock provided earlier estimates than expected, suggesting that it may not be appropriate to time the duplication of paralogues using rate estimates derived from orthologous comparisons. Overall, the results indicate that amino acid sequences do not provide a strong signal supporting the hypothesis that gene duplications early in vertebrate history occurred by polyploidization. On the other hand, the data are easily explained under an alternative model that gene duplications occurred at different times in different vertebrate gene families.  相似文献   

10.
Gene duplication is one of the main mechanisms by which genomes can acquire novel functions. It has been proposed that the retention of gene duplicates can be associated to processes of tissue expression divergence. These models predict that acquisition of divergent expression patterns should be acquired shortly after the duplication, and that larger divergence in tissue expression would be expected for paralogs, as compared to orthologs of a similar age. Many studies have shown that gene duplicates tend to have divergent expression patterns and that gene family expansions are associated with high levels of tissue specificity. However, the timeframe in which these processes occur have rarely been investigated in detail, particularly in vertebrates, and most analyses do not include direct comparisons of orthologs as a baseline for the expected levels of tissue specificity in absence of duplications. To assess the specific contribution of duplications to expression divergence, we combine here phylogenetic analyses and expression data from human and mouse. In particular, we study differences in spatial expression among human-mouse paralogs, specifically duplicated after the radiation of mammals, and compare them to pairs of orthologs in the same species. Our results show that gene duplication leads to increased levels of tissue specificity and that this tends to occur promptly after the duplication event.  相似文献   

11.
Many eukaryotic genomes contain a large fraction of gene duplicates (or paralogs) as a result of ancient or recent whole‐genome duplications (Ohno 1970 ; Jaillon et al. 2004 ; Kellis et al. 2004 ). Identifying paralogs with NGS data is a pervasive problem in both ancient polyploids and neopolyploids. Likewise, paralogs are often treated as a nuisance that has to be detected and removed (Everett et al. 2012 ). In this issue of Molecular Ecology Resources, Waples et al. ( 2015 ) show that exclusion might not be necessary and how we may miss out on important genomic information in doing so. They present a novel statistical approach to detect paralogs based on the segregation of RAD loci in haploid offspring and test their method by constructing linkage maps with and without these duplicated loci in chum salmon, Oncorhynchus keta (Fig.  1 ). Their linkage map including the resolved paralogs shows that these are mostly located in the distal regions of several linkage groups. Particularly intriguing is their finding that these homoeologous regions appear impoverished in transposable elements (TE). Given the role that TE play in genome remodelling, it is noteworthy that these elements are of low abundance in regions showing residual tetrasomic inheritance. This raises the question whether re‐diploidization is constrained in these regions and whether they might have a role to play in salmonid speciation. This study provides an original approach to identifying duplicated loci in species with a pedigree, as well as providing a dense linkage map for chum salmon, and interesting insights into the retention of gene duplicates in an ancient polyploid.  相似文献   

12.
13.
The recent sequencing of several eukaryotic genomes has generated considerable interest in the study of gene duplication events. The classical model of duplicate gene evolution is that recurrent mutation ultimately results in one copy becoming a pseudogene, and only rarely will a beneficial new function evolve. Here, we study divergence between coding sequence duplications in Drosophila melanogaster as a function of the linkage relationship between paralogs. The mean K(a)/K(s) between all duplicates in the D. melanogaster genome is 0.2803, indicating that purifying selection is maintaining the structure of duplicate coding sequences. However, the mean K(a)/K(s) between duplicates that are both on the X chromosome is 0.4701, significantly higher than the genome average. Further, the distribution of K(a)/K(s) for these X-linked duplicates is significantly shifted toward higher values when compared with the distributions for paralogs in other linkage relationships. Two models of molecular evolution provide qualitative explanations of these observations-relaxation of selective pressure on the duplicate copies and, more likely, positive selection on recessive adaptations. We also show that there is an excess of X-linked duplicates with low K(s), suggesting a larger proportion of relatively young duplicates on the D. melanogaster X chromosome relative to autosomes.  相似文献   

14.
Nontandem segmental duplications provide a useful alternative to conventional recombination mapping for determining gene order in a haploid organism such asNeurospora. When an insertional or terminal rearrangement is crossed by Normal sequence, a class of progeny is produced that have a precisely delimited chromosome segment duplicated. In such Duplication progeny, a recessive gene in the Normal-sequence donor chromosome may or may not be masked (“covered”) by its dominant wild-type allele in the translocation-sequence recipient chromosome. Coverage depends upon whether the gene in question is left or right of the rearrangement breakpoint. The recessive gene will be heterozygous and covered (not expressed) if its locus is within the duplicated segment, but it will be haploid and expressed if the locus is outside the segment. Not only genes but also centromeres can be mapped by means of duplications, because genes included in. the same viable duplication must reside in the same chromosome arm. - Numerous sequences in the current genetic maps ofN. crassa have been determined using duplications. Gene order in the albino region and in the centromere region of linkage group I provide examples. Over 50 insertional or terminal rearrangements are available from which nontandem duplications of defined content can be obtained at will; collectively these cover about 75% of the genome. - Intercrosses between partially overlapping chromosome rearrangements also produce Duplication progeny containing two copies of regions between the breakpoints. The 180 mapped reciprocal translocations and inversions include numerous overlapping combinations that can be used for duplication mapping.  相似文献   

15.
Gene duplication is a major mechanism to create new genes. After gene duplication, some duplicated genes undergo functionalization, whereas others largely maintain redundant functions. Duplicated genes comprise various degrees of functional diversification in plants. However, the evolutionary fate of high and low diversified duplicates is unclear at genomic scale. To infer high and low diversified duplicates in Arabidopsis thaliana genome, we generated a prediction method for predicting whether a pair of duplicate genes was subjected to high or low diversification based on the phenotypes of knock-out mutants. Among 4,017 pairs of recently duplicated A. thaliana genes, 1,052 and 600 are high and low diversified duplicate pairs, respectively. The predictions were validated based on the phenotypes of generated knock-down transgenic plants. We determined that the high diversified duplicates resulting from tandem duplications tend to have lineage-specific functions, whereas the low diversified duplicates produced by whole-genome duplications are related to essential signaling pathways. To assess the evolutionary impact of high and low diversified duplicates in closely related species, we compared the retention rates and selection pressures on the orthologs of A. thaliana duplicates in two closely related species. Interestingly, high diversified duplicates resulting from tandem duplications tend to be retained in multiple lineages under positive selection. Low diversified duplicates by whole-genome duplications tend to be retained in multiple lineages under purifying selection. Taken together, the functional diversities determined by different duplication mechanisms had distinct effects on plant evolution.  相似文献   

16.
Researchers have long been enthralled with the idea that gene duplication can generate novel functions, crediting this process with great evolutionary importance. Empirical data shows that whole-genome duplications (WGDs) are more likely to be retained than small-scale duplications (SSDs), though their relative contribution to the functional fate of duplicates remains unexplored. Using the map of genetic interactions and the re-sequencing of 27 Saccharomyces cerevisiae genomes evolving for 2,200 generations we show that SSD-duplicates lead to neo-functionalization while WGD-duplicates partition ancestral functions. This conclusion is supported by: (a) SSD-duplicates establish more genetic interactions than singletons and WGD-duplicates; (b) SSD-duplicates copies share more interaction-partners than WGD-duplicates copies; (c) WGD-duplicates interaction partners are more functionally related than SSD-duplicates partners; (d) SSD-duplicates gene copies are more functionally divergent from one another, while keeping more overlapping functions, and diverge in their sub-cellular locations more than WGD-duplicates copies; and (e) SSD-duplicates complement their functions to a greater extent than WGD–duplicates. We propose a novel model that uncovers the complexity of evolution after gene duplication.  相似文献   

17.
We have identified a chromosome duplication in the pericentromeric region of human chromosome 11 located in 11p11 and 11q14. A detailed physical map of each duplicated region was generated to describe the nature of the duplication, the involvement at the centromere and to resolve the correct maps. All clones were evaluated to ensure they were representative of their genetic origin. The order of clones, based on their marker content, as well as the distance covered was determined by SEGMAP. Each duplication encompasses more than 1 Mb of DNA and appears to be chromosome 11 specific. Ten STS markers were mapped within each duplication. Comparative sequence analysis along the duplication identified 35 nucleotide changes in 2,036 bp between the two copies, suggesting the duplication occurred over 14 million years ago. A suggested organization of the pericentromeric region, including the duplications and alpha-related repetitive sequences, is presented.  相似文献   

18.
Duplications are an important mechanism for the emergence of genetic novelties. Reports on duplicated genes are numerous, and mechanisms for polyploidization or local gene duplication are beginning to be understood. When a local duplication is studied, searches are usually done gene-by-gene, and the size of duplicated segments is not often investigated. Therefore, we do not know if the gene in question has duplicated alone or with other genes, implying that "en bloc" duplications are poorly studied. We propose a method for identification of "en bloc" duplication using mapping, phylogenetic and statistical analyses. We show that two segments present in the major histocompatibility complex (MHC) region of human chromosome 6 have resulted from an "en bloc" duplication that took place between divergence of amniotes and methaterian/eutherian separation. These segments contain members of the same multigenic families, namely olfactory receptors genes, genes encoding proteins containing B30.2 domain, genes encoding proteins containing immunoglobulin V domain and MHC class I genes. We will discuss the fact that olfactory receptors and MHC genes have undergone positive selection, which could have helped in fixation of the surrounding genes.  相似文献   

19.
Accumulating evidence for alternative gene orders demonstrates that vertebrate mitochondrial genomes are more evolutionarily dynamic than previously thought. Several lineages of parthenogenetic lizards contain large, tandem duplications that include rRNA, tRNA, and protein-coding genes, as well as the control region. Such duplications are hypothesized as intermediate stages in gene rearrangement, but the early stages of their evolution have not been previously studied. To better understand the evolutionary dynamics of duplicated segments of mitochondrial DNA, we sequenced 10 mitochondrial genomes from recently formed ( approximately 300,000 years ago) hybrid parthenogenetic geckos of the Heteronotia binoei complex and 1 from a sexual form. These genomes included some with an arrangement typical of vertebrates and others with tandem duplications varying in size from 5.7 to 9.4 kb, each with different gene contents and duplication endpoints. These results, together with phylogenetic analyses, indicate independent and frequent origins of the duplications. Small, direct repeats at the duplication endpoints imply slipped-strand error as a mechanism generating the duplications as opposed to a false initiation/termination of DNA replication mechanism that has been invoked to explain duplications in other lizard mitochondrial systems. Despite their recent origin, there is evidence for nonfunctionalization of genes due primarily to deletions, and the observed pattern of gene disruption supports the duplication-deletion model for rearrangement of mtDNA gene order. Conversely, the accumulation of mutations between these recent duplicates provides no evidence for gene conversion, as has been reported in some other systems. These results demonstrate that, despite their long-term stasis in gene content and arrangement in some lineages, vertebrate mitochondrial genomes can be evolutionary dynamic even at short timescales.  相似文献   

20.
Recent analyses of complete genome sequences have revealed that many genomes have been duplicated in their evolutionary past. Such events have been associated with important biological transitions, major leaps in evolution and adaptive radiations of species. Here, we consider recently developed computational methods to detect such ancient large-scale gene duplication events. Several new approaches have been used to show that large-scale gene duplications are more common than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号