首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms of leaf tooth formation in Arabidopsis   总被引:1,自引:0,他引:1  
Serration found along leaf margins shows species‐specific characters. Whereas compound leaf development is well studied, the process of serration formation is largely unknown. To understand mechanisms of serration development, we investigated distinctive features of cells that could give rise to tooth protrusion in the simple‐leaf plant Arabidopsis. After the emergence of a tooth, marginal cells, except for cells at the sinuses and tips, started to elongate rapidly. Localized cell division seemed to keep cells at the sinus smaller, rather than halt cell elongation. As leaves matured, the marginal cell number between teeth became similar in any given tooth. These results suggest that teeth are formed by repetition of an unknown mechanism that spatially monitors cell number and regulates cell division. We then examined the role of CUP‐SHAPED COTYLEDON 2 (CUC2) in serration development. cuc2‐3 forms fewer hydathodes and auxin maxima, visualized by DR5rev::GFP, at the leaf margin, suggesting that CUC2 patterns serration through the regulation of auxin. In contrast to a previous interpretation, comparison of leaf outlines revealed that CUC2 promotes outgrowth of teeth rather than suppression of growth at the sinuses. We found that mutants with increased CUC2 expression form ectopic tissues and mis‐express SHOOT MERISTEMLESS (STM) at the sinus between the enhanced teeth. Similar but infrequent STM expression was found in the wild type, indicating STM involvement in the serration of simple leaves. Our study provides insights into the morphological and molecular mechanisms for leaf development and tooth formation, and highlights similarities between serration and compound leaf development.  相似文献   

2.
Sap Exudation via the Epidermis of Leaves   总被引:2,自引:0,他引:2  
Reports of stomatal guttation in Gladiolus and of active waterexudation in Vidafaba could not be confirmed by an experimentaland anatomical investigation. Exudation of water from detachedpine needles is considered to be due to processes distinct fromthose causing guttation. Water soaking of leaves, or the flooding of leaf air spaces,and the wettability of cell walls under root pressure as distinctfrom their wettability by water externally applied are discussedin relation to the experimental results.  相似文献   

3.
The structural details of the guttating tips of 7-day-old barleyleaves were studied as a basis for a subsequent report on thephysiology of guttation. The walls of the vessels at the tipsof leaves bear many pits and are rather thin, appearing neithercutinized nor lignified. This could facilitate a direct passageof solutes out of the xylary system through the leaf apoplastand out to the leaf surface via hydathode openings. The latterare formed by modified stomatal guard cells, and there are nospecially differentiated epithem, epithelium or gland hair likestructures that could serve an active elimination of guttation.Xylem parenchyma cells and the peculiar mesophyll cells withdense cytoplasm, numerous mitochondria, an extended ER systemand a considerable formation of small vesicles in the leaf tipcould modify the content of the guttated fluid along the routeof transport. Hordeum vulgare L., barley, hydathodes, guttation  相似文献   

4.
Background and Aims Root hemiparasites from the rhinanthoid clade of Orobanchaceae possess metabolically active glandular trichomes that have been suggested to function as hydathode trichomes actively secreting water, a process that may facilitate resource acquisition from the host plant’s root xylem. However, no direct evidence relating the trichomes to water secretion exists, and carbon budgets associated with this energy-demanding process have not been determined.Methods Macro- and microscopic observations of the leaves of hemiparasitic Rhinanthus alectorolophus were conducted and night-time gas exchange was measured. Correlations were examined among the intensity of guttation, respiration and transpiration, and analysis of these correlations allowed the carbon budget of the trichome activity to be quantified. We examined the intensity of guttation, respiration and transpiration, correlations among which indicate active water secretion.Key Results Guttation was observed on the leaves of 50 % of the young, non-flowering plants that were examined, and microscopic observations revealed water secretion from the glandular trichomes present on the abaxial leaf side. Night-time rates of respiration and transpiration and the presence of guttation drops were positively correlated, which is a clear indicator of hydathode trichome activity. Subsequent physiological measurements on older, flowering plants indicated neither intense guttation nor the presence of correlations, which suggests that the peak activity of hydathodes is in the juvenile stage.Conclusions This study provides the first unequivocal evidence for the physiological role of the hydathode trichomes in active water secretion in the rhinanthoid Orobanchaceae. Depending on the concentration of organic elements calculated to be in the host xylem sap, the direct effect of water secretion on carbon balance ranges from close to neutral to positive. However, it is likely to be positive in the xylem-only feeding holoparasites of the genus Lathraea, which is closely related to Rhinanthus. Thus, water secretion by the hydathodes might be viewed as a physiological pre-adaptation in the evolution of holoparasitism in the rhinanthoid lineage of Orobanchaceae.  相似文献   

5.
In the seasonally flooded forest of the Mapire River, a tributary of the Orinoco, seedlings remain totally covered by flood water for over six months. In order to characterize the physiological response to flooding and submergence, seedlings of the tree Pouteria orinocoensis, an important component of the forest vegetation, were subjected experimentally to flooding. Flooding was imposed gradually, the maximum level of flood including submerged and emerged leaves. After 45 d a severe reduction of net photosynthetic rate (P N) and stomatal conductance (g s) was observed in emerged leaves, whereas leaf water potential remained constant. The decrease in P N of emerged leaves was associated to an increase in both relative stomatal and non-stomatal limitations, and the maintenance of the internal/air CO2 concentration (C i/C a) for at least 20 d of flooding. After this time, both P N and g s became almost zero. The decrease in photosynthetic capacity of emerged leaves with flooding was also evidenced by a decrease in carboxylation efficiency; photon-saturated photosynthetic rate, and apparent quantum yield of CO2 fixation. Oxygen evolution rate of submerged leaves measured after three days of treatment was 7 % of the photosynthetic rate of emerged leaves. Submersion determined a chronic photoinhibition of leaves, viewed as a reduction in maximum quantum yield in dark-adapted leaves, whereas the chlorophyll fluorescence analysis of emerged leaves pointed out at the occurrence of dynamic, rather than chronic, photoinhibition. This was evidenced by the absence of photochemical damage, i.e. the maintenance of maximum quantum yield in dark-adapted leaves. Nevertheless, the observed lack of complementarity between photochemical and non-photochemical quenching after 12 d of flooding implies that the capacity for photochemical quenching decreased in a non-co-ordinate manner with the increase in non-photochemical quenching.  相似文献   

6.
Leaf water relations, net gas exchange and leaf and root constituent responses to 9 days of drought stress (DS) or soil flooding were studied in 6‐month‐old seedlings of Carrizo citrange [Citrus sinensis (L.) Osb. ×Poncirus trifoliata L.; Carr] and Cleopatra mandarin (Citrus resnhi Hort. ex Tanaka; Cleo) growing in containers of native sand in the greenhouse. At the end of the drought period, both species had similar minimum stem water potentials but Cleo had higher leaf relative water content (RWC) and higher leaf osmotic potential at full turgor () than Carr. Flooding had no effect on RWC but osmotic adjustment (OA) and were higher in Cleo than in Carr. Net CO2 assimilation rate (ACO2) in leaves was decreased more by drought than by flooding in both species but especially in Carr. Leaf water‐use efficiency (ACO2/transpiration) was lower in Carr and was decreased more by DS and flooding stress than in Cleo. Higher values of intercellular CO2 concentration (Ci) in stressed plants than in control plants indicated that non‐stomatal factors including chlorophyll degradation and chlorophyll fluorescence [maximum quantum efficiency of PSII (Fv/Fm, where Fm is the maximum fluorescence and F0, minimum fluorescence in dark‐adapted leaves)] were more important limitations on ACO2 than stomatal conductance. In both genotypes, leaf proline was increased by drought but not by flooding, whereas both stresses increased proline in roots. Soluble sugars in leaves were increased by DS, and flooding decreased leaf sugars in Cleo. In general, DS tended to increase the concentrations of Ca, K, Mg, Na and Cl in both leaves and roots, whereas flooding tended to decrease these ions with the exception of leaf Ca in Cleo. Based on water relations and net gas exchange, Cleo was more tolerant to short‐term DS and flooding stress than Carr.  相似文献   

7.
When atmospheric CO2 concentration increases, various consequences for plant metabolism have been suggested, such as changes in photosynthesis, photorespiration or respiration which can affect growth and carbon sequestration. In addition to long‐term (indirect) effects on respiration, short‐term (direct) effects of CO2 concentration on the respiration of leaves, shoots and roots are described in the literature. In most cases, respiration is reported to be inhibited by increased CO2 concentration, but the mechanism(s) are not yet understood. It has been shown previously that, when the respective technical problems and properties of a gas exchange system are fully considered, a short‐term increase in CO2 (up to 4200 µmol mol?1) had no effect on respiration of Phaseolus or Populus leaves (Jahnke, Plant, Cell and Environment 24, 1139–1151, 2001). However, in the present study, large (apparent) CO2 effects were found with mature Nicotiana leaves whereas, in young leaves, the effect was absent. The experimental results clearly show that the observed direct CO2 effect on dark CO2 efflux in the mature tobacco leaves was caused by leakage of CO2 inside the leaves (and the magnitude of the effect was dependent on the size of the leakage). Nicotiana leaves are, in contrast to Phaseolus and Populus leaves (which are heterobaric), characterized by a homobaric anatomy in which intercellular air spaces are not compartmented and provide a continuous system of open pores in the lateral (paradermal) direction of the leaves. Mesophyll porosity increases with leaf development, which explains the differences between young and mature tobacco leaves. When internal leakage was experimentally restricted, the CO2 inhibition on CO2 efflux was no longer observed. It is concluded that the measured direct CO2 effect(s) on leaf CO2 efflux in the dark are artefactual, and that a true direct CO2 effect on leaf respiration does not exist.  相似文献   

8.
Ethylene is considered one of the most important plant hormones orchestrating plant responses to flooding stress. However, ethylene may induce deleterious effects on plants, especially when produced at high rates in response to stress. In this paper, we explored the effect of attenuated ethylene sensitivity in the Never ripe (Nr) mutant on leaf photosynthetic capacity of flooded tomato plants. We found out that reduced ethylene perception in Nr plants was associated with a more efficient photochemical and non-photochemical radiative energy dissipation capability in response to flooding. The data correlated with the retention of chlorophyll and carotenoids content in flooded Nr leaves. Moreover, leaf area and specific leaf area were higher in Nr, indicating that ethylene would exert a negative role in leaf growth and expansion under flooded conditions. Although stomatal conductance was hampered in flooded Nr plants, carboxylation activity was not affected by flooding in the mutant, suggesting that ethylene is responsible for inducing non-stomatal limitations to photosynthetic CO2 uptake. Upregulation of several cysteine protease genes and high protease activity led to Rubisco protein loss in response to ethylene under flooding. Reduction of Rubisco content would, at least in part, account for the reduction of its carboxylation efficiency in response to ethylene in flooded plants. Therefore, besides its role as a trigger of many adaptive responses, perception of ethylene entails limitations in light and dark photosynthetic reactions by speeding up the senescence process that leads to a progressive disassembly of the photosynthetic machinery in leaves of flooded tomato plants.  相似文献   

9.
The degree of leaf dissection and the presence of leaf teeth, along with tooth size and abundance, inversely correlate with mean annual temperature (MAT) across many plant communities. These relationships form the core of several methods for reconstructing MAT from fossils, yet the direct selection of temperature on tooth morphology has not been demonstrated experimentally. It is also not known if atmospheric CO2 concentration affects leaf shape, limiting confidence in ancient climate reconstructions because CO2 has varied widely on geologic timescales. Here I report the results of growing Acer rubrum (red maple) in growth cabinets at contrasting temperature and CO2 conditions. The CO2 treatment imparted no significant differences in leaf size and shape, while plants grown at cooler temperatures tended to have more teeth and more highly dissected leaves. These results provide direct evidence for the selection of temperature on leaf shape in one species, and support a key link in many leaf-climate methods. More broadly, these results increase confidence for using leaf shape in fossils to reconstruct paleoclimate.  相似文献   

10.
Signs of abiotic toxicity often appear first at the margins of leaves and gradually spread toward the midrib. It has been suggested that the bundle sheath tissue surrounding the shoot vascular system acts as a solute transport-regulating barrier that prevents excessive quantities of toxic ions from entering the leaf and pushes them toward the hydathodes. We examined this hypothesis by examining the distribution of toxic boron (B) in mutant Arabidopsis leaves with flooded mesophyll and comparing it with that observed in control leaves that exuded guttation drops. As opposed to the control plants, which showed classical symptoms of B toxicity (necrosis starting at the leaf margins), in the mutants, necrosis was first observed inside the leaf. We will discuss this result and how it supports the hypothesis that the bundle sheath serves as a selective barrier filtering the xylem-to-leaf radial transport flow and pushing toxic solutes toward the hydathodes.  相似文献   

11.
Fluctuating asymmetry (FA) represents small, random variation from symmetry in otherwise bilaterally symmetrical characters. Significant increases in FA have been found for several species of plants and animals in response to various stresses, including environmental and genetic factors. In this study, we investigated the effects of elevated CO2 on leaf symmetry of two oak species, Quercus geminata and Q. myrtifolia, and the responses of three species of leaf miners and one gall‐making species to random variation in leaf morphology. Leaf FA decreased with an increase in CO2 concentration. There were fewer asymmetric leaves and lower levels of asymmetry on leaf width and leaf area on elevated CO2 compared with ambient CO2. Leaf miners responded to leaf asymmetry, attacking asymmetric leaves more frequently than expected by chance alone. Differences in secondary chemistry and nitrogen (N) content between symmetric and asymmetric leaves may be responsible for these results due to lower levels of tannins and higher levels of N found on asymmetric leaves of Q. myrtifolia and Q. geminata.  相似文献   

12.
Growth and survival of Xanthomonas campestris pv. dieffenbachiae in guttation fluids (xylem sap exuded from leaf margins) of anthuriums were suppressed by several bacterial strains indigenous to leaves of various anthurium cultivars. Inhibition of growth was not observed in filter-sterilized guttation fluids and was restored to original levels only by reintroducing specific mixtures of bacteria into filter-sterilized guttation fluids. The inhibitory effect was related to the species in the bacterial community rather than to the total numbers of bacteria in the guttation fluids. One very effective bacterial community consisted of five species isolated from inhibitory guttation fluids of two susceptible anthurium cultivars. The individual strains in this community had no effect on the pathogen, but the mixture was inhibitory to X. campestris pv. dieffenbachiae in guttation fluids. The populations of the individual strains remained near the initial inoculum levels for at least 14 days. The effect of the five inhibitory strains on reducing disease in susceptible anthurium plants was tested by using a bioluminescent strain of X. campestris pv. dieffenbachiae to monitor the progression of disease in leaves nondestructively. Invasion of the pathogen through hydathodes at leaf margins was reduced by applying the strain mixture to the leaves. When the strain mixture was applied directly to wounds created on the leaf margins, the pathogen failed to invade through the wounds. This bacterial community has potential for biological control of anthurium blight.  相似文献   

13.
When buds form in summer or early fall, modified stipules act as bud scales and their adaxial epidermis secretes a resin that fills the bud. This secretory layer collapses in the dormant bud. Immature leaves, stipules, and leaf primordia occupy the center of the bud; all lack functional resin glands. In spring, stipules of emerging leaves develop an adaxial palisadelike secretory epidermis that becomes more ridged longitudinally in successive stipules. Marginal teeth of the first leaves to emerge are covered with trichomes and lack a secretory epidermis. In successive leaves the teeth become glandular and secrete resin as the lamina unrolls. Later in the season, marginal leaf glands account for much of the resin. Unspecialized hydathodes or extrafloral nectaries occur proximal to each glandular tip. Guttation of water or nectar occurs here through stomata located above a vein ending. On the basis of field observations and a laboratory feeding experiment, the resin seems to function mainly as an insect repellent. It may also reduce water loss from young leaves.  相似文献   

14.
The fan-shaped leaves of the resurrection plant Myrothamnus flabellifolius Welw. fold during episodes of drought and consequent desiccation of the tissue. The leaf teeth of M. flabellifolius have several features characteristic of hydathodes. Tracheary elements from the three vein endings that converge in each leaf tooth subtend and extend into a cluster of cells significantly smaller than those of the adjacent mesophyll. The stomata overlying this putative epithem are larger than the other stomata on the leaf surface. Crystal violet is absorbed via these stomata in non-transpiring leaves, suggesting that they are water pores. Two to four such water pores occur per hydathode and are readily distinguished in desiccated leaves. Laminar hydathodes apparently also occur in the leaves of M. flabellifolius. Branched vein endings that terminate in short, wide tracheary elements subtend the outer edges of the abaxial leaf ridge, which otherwise lack stomata, and coincide with regions of crystal violet uptake. Guttation could not be induced in M. flabellifolius. However, desiccated leaves readily absorb liquid water through the leaf surface. The use of Calcafluor White to trace the pathway of apoplastic water movement suggests a role for both types of hydathode in foliar water uptake during rehydration while the accumulation of Sulphorhodamine G (indicating solute retrieval from the apoplast) in the epithem of transpiring plants suggests the hydathodes may be a pathway of water loss in the desiccating leaf.  相似文献   

15.
A new species of Plagiomnium (Mniaceae), P. guizhouense Y.-J.Yi & S.He from Guizhou, China is described and illustrated. The new species is similar to P. affine in having spinosely serrate leaf margins with teeth consisting of up to 4 or more cells, a broadly elliptic leaf shape, and a decurrent leaf base, but is distinguished from the latter species by having a cuspidate leaf apex, broader marginal differentiation with borders consisting of 4–5 rows of linear, thick-walled cells, strongly ciliate marginal teeth that are sometimes branched and up to 7 cells long in upper fertile stem leaves and perichaetial leaves, and a much shorter leaf costa that ends just above mid-leaf in the lower leaves.  相似文献   

16.
For most of the past 250 000 years, atmospheric CO2 has been 30–50% lower than the current level of 360 μmol CO2 mol–1 air. Although the effects of CO2 on plant performance are well recognized, the effects of low CO2 in combination with abiotic stress remain poorly understood. In this study, a growth chamber experiment using a two-by-two factorial design of CO2 (380 μmol mol–1, 200 μmol mol–1) and temperature (25/20 °C day/night, 36/29 °C) was conducted to evaluate the interactive effects of CO2 and temperature variation on growth, tissue chemistry and leaf gas exchange of Phaseolus vulgaris. Relative to plants grown at 380 μmol mol–1 and 25/20 °C, whole plant biomass was 36% less at 380 μmol mol–1× 36/29 °C, and 37% less at 200 μmol mol–1× 25/20 °C. Most significantly, growth at 200 μmol mol–1× 36/29 °C resulted in 77% less biomass relative to plants grown at 380 μmol mol–1× 25/20 °C. The net CO2 assimilation rate of leaves grown in 200 μmol mol–1× 25/20 °C was 40% lower than in leaves from 380 μmol mol–1× 25/20 °C, but similar to leaves in 200 μmol mol–1× 36/29 °C. The leaves produced in low CO2 and high temperature respired at a rate that was double that of leaves from the 380μmol mol–1× 25/20 °C treatment. Despite this, there was little evidence that leaves at low CO2 and high temperature were carbohydrate deficient, because soluble sugars, starch and total non-structural carbohydrates of leaves from the 200μmol mol–1× 36/29 °C treatment were not significantly different in leaves from the 380μmol mol–1× 25/20 °C treatment. Similarly, there was no significant difference in percentage root carbon, leaf chlorophyll and leaf/root nitrogen between the low CO2× high temperature treatment and ambient CO2 controls. Decreased plant growth was correlated with neither leaf gas exchange nor tissue chemistry. Rather, leaf and root growth were the most affected responses, declining in equivalent proportions as total biomass production. Because of this close association, the mechanisms controlling leaf and root growth appear to have the greatest control over the response to heat stress and CO2 reduction in P. vulgaris.  相似文献   

17.
18.
Maize plants (Zea mays L.) were subjected to soil flooding for 72, 96, and 120 h. A noticeable decrease in the rate of net photosynthesis (PN) and the activity of ribulose-1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) were observed. The values of intercellular CO2 concentrations (ci) increased in all flooded plants without significant changes in stomatal conductance (gs). The activity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) increased twofold 120 h after soil flooding. Flooding of maize plants led to a decrease in chlorophyll and protein levels and to slight increase of proline content. Flooded plants exhibited a large accumulation of leaf acidity. An increase in the values of some important parameters associated with oxidative stress, namely peroxides production, lipid peroxidation, and electrolyte leakage, confirmed the suggestion that root oxygen deficiency caused photooxidative damage in maize leaves.  相似文献   

19.
Poplar (Populus × euroamericana) saplings were grown in the field to study the changes of photosynthesis and isoprene emission with leaf ontogeny in response to free air carbon dioxide enrichment (FACE) and soil nutrient availability. Plants growing in elevated [CO2] produced more leaves than those in ambient [CO2]. The rate of leaf expansion was measured by comparing leaves along the plant profile. Leaf expansion and nitrogen concentration per unit of leaf area was similar between nutrient treatment, and this led to similar source–sink functional balance. Consequently, soil nutrient availability did not cause downward acclimation of photosynthetic capacity in elevated [CO2] and did not affect isoprene synthesis. Photosynthesis assessed in growth [CO2] was higher in plants growing in elevated than in ambient [CO2]. After normalizing for the different number of leaves over the profile, maximal photosynthesis was reached and started to decline earlier in elevated than in ambient [CO2]. This may indicate a [CO2]‐driven acceleration of leaf maturity and senescence. Isoprene emission was adversely affected by elevated [CO2]. When measured on the different leaves of the profile, isoprene peak emission was higher and was reached earlier in ambient than in elevated [CO2]. However, a larger number of leaves was emitting isoprene in plant growing in elevated [CO2]. When integrating over the plant profile, emissions in the two [CO2] levels were not different. Normalization as for photosynthesis showed that profiles of isoprene emission were remarkably similar in the two [CO2] levels, with peak emissions at the centre of the profile. Only the rate of increase of the emission of young leaves may have been faster in elevated than in ambient [CO2]. Our results indicate that elevated [CO2] may overall have a limited effect on isoprene emission from young seedlings and that plants generally regulate the emission to reach the maximum at the centre of the leaf profile, irrespective of the total leaf number. In comparison with leaf expansion and photosynthesis, isoprene showed marked and repeatable differences among leaves of the profile and may therefore be a useful trait to accurately monitor changes of leaf ontogeny as a consequence of elevated [CO2].  相似文献   

20.
The freshwater secondarily aquatic plants, most of which are higher plants, are those returned to the water environment after spending a period of time living on land. The readaptation to living underwater has made it necessary for these plants to put in place morphological and functional strategies to cope with some major problems due to features of the aquatic environment, but also deriving from the specialized organization of their “terrestrial” bodies. The poor O2 availability underwater accounted for the evolution of wide aerenchyma tissues throughout the plant organs to improve the photosynthetic O2 flux from the shoot to the roots buried in anoxic sediments and to the neighboring rhizosphere. This favors sediment oxygenation, sustains the aerobic metabolism of roots, and improves the availability and uptake of mineral nutrients, whose delivery to the entire plants, without a transpirational flux, is ensured by an acropetal mass transport depending on root pressure, guttation from hydathodes and channeling by apoplast closure around the vascular tissues. A great expansion of leaf surfaces and an enhanced surface:volume ratio of chloroplast-rich photosynthetic cells help to contact the water medium and to increase the cell/environment exchanges to gain inorganic carbon. Furthermore, different physiological mechanisms operate to cope with the scarce availability of CO2 and the prevalence of HCO3 ? as inorganic carbon form in water. Some of them, like cell wall acidification through H+ extrusion by a light-dependent APTase or activation of an apoplastic carbonic anhydrase, operate outside the cells, leading to a conversion of HCO3 ? to CO2, which then diffuses into the cells. Others, on the contrary, act inside the cells to load the active site of Rubisco with CO2, thus favoring photosynthesis and lowering photorespiration. Aquatic macrophytes with isoetid life form, moreover, can obtain most ot the fixed CO2 from sediments. In submerged species, in additin to the C3 cycle, the C4 and CAM-like photosynthetic metabolisms can also operate, and are modulated by the environmental inorganic carbon availability and the plant photosynthetic demand. Interestingly, in the aquatic plants the C4 pathway, which can be concomitant with the C3 one, does not depend on the Kranz anatomy of leaves, but relies on the intracellular compartmentation of carboxylative and decarboxylative enzymes. The CAM-like pathway, defined AAM, which also coexists with the C3, allows the submerged plants to fix CO2 in the dark, thus exploiting the higher CO2 availability in the water medium during the night, and extending to 24?h the period of inorganic carbon assimilation. In almost all the aquatic macrophytes the AAM is only expressed in the submersion state, whereas it is quickly inactivated in emerging leaves in a cell by cell way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号