首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
2.
Reticulate scales develop as radial symmetrical anlagen, in contrast to scuttate scales which appear initially as “epidermal placodes.” Unlike scuttate scales whose outer and inner epidermal surfaces elaborate β-and α-type keratins, respectively, reticulate scales elaborate only one type of epidermal surface which has been reported to give an α-type, X-ray diffraction pattern. We find that, histologically and ultrastructurally, this surface differs from either epidermal surface of scuttate scales. The keratinizing cells become filled with long interweaving bundles of α-filaments which aggregate into rather homogeneous α-fibrils. Keratohyalin granules, which have been shown to be associated with other keratinizing regions in the bird, do not form during the keratinization of reticulate scale epidermis.  相似文献   

3.
Epidermis isolated from the anterior tarsometatarsus region of scaleless mutant chick legs was found to contain only α fibrous protein rather than the usual feather one. The polyacrylamide disc electrophoretic pattern of structural proteins isolated from mutant epidermis was also different from that of normal tissue. X-ray diffraction analysis of the claw of mutant chicks, however, showed the usual feather pattern. These results indicated that failure of scale induction rather than a defect in synthesis of feather protein is the abnormality in the mutant chick.  相似文献   

4.
The ability of the germinative cell population of scutate scale epidermis to continue to generate cells that undergo their appendage-specific differentiation (beta stratum formation), when associated with foreign dermis, was examined. Tissue recombination experiments were carried out which placed anterior metatarsal epidermis (scutate scale forming region) from normal 15-day chick embryos with either the anterior metatarsal dermis from 15-day scaleless (sc/sc) embryos or the dermis from the metatarsal footpad (reticulate scale forming region) of 15-day normal embryos. Neither of these dermal tissues are able to induce beta stratum formation in the simple ectodermal epithelium of the chorion, however, the footpad dermis develops an appendage-specific pattern during morphogenesis of the reticulate scales, while the sc/sc dermis does not. Morphological and immunohistological criteria were used to assess appendage-specific epidermal differentiation in these recombinants. The results show that the germinative cell population of the 15-day scutate scale epidermis is committed to generating suprabasal cells that follow their appendage-specific pathways of histogenesis and terminal differentiation. Of significance is the observation that the expression of this determined state occurred only when the epidermis differentiated in association with the footpad dermis, not when it was associated with the sc/sc dermis. The consistent positioning of the newly generated beta strata to the apical regions of individual reticulate-like appendages demonstrates that the dermal cues necessary for terminal epidermal differentiation are present in a reticulate scale pattern. The observation that beta stratum formation is completely missing in the determined scutate scale epidermis when associated with the sc/sc dermis adds to our understanding of the sc/sc defect. The present data support the conclusion of earlier studies that the anterior metatarsal dermis from 15-day sc/sc embryos lacks the ability to induce beta stratum formation in a foreign epithelium. In addition, these observations evoke the hypothesis that the sc/sc dermis either lacks the cues (generated during scutate and reticulate scale morphogenesis) necessary for terminal differentiation of the determined scutate scale epidermis or inhibits the generation of a beta stratum.  相似文献   

5.
The inductive capacities of 9- to 16-day anterior foot dermis of scaleless low line and normal embryos were compared by recombining them with a common source of epidermis, i.e., 7-day normal back epidermis. Tissue recombinants were cultured as grafts to the chorioallantoic membrane (CAM). Both normal and scaleless low line dermis of 12 to 13 days of incubation began to lose their ability to elicit feather production in 7-day normal back epidermis. Normal foot dermis began to elicit scale production at 12 to 13 days, whereas scaleless low line anterior foot dermis maintained feather production at a low level. It is inferred that without being associated with scale placode formation, scaleless low line anterior foot dermis does not acquire specific inductive capacities related to the production of an outer scale surface in the overlying epidermis. Feather placodes do not function as surrogates of scale placodes. The difference between normal and scaleless low line anterior foot dermis in terms of specific inductive capacities related to scale production is interpreted as a secondary effect of the action of the scaleless allele in interfering with scale placode formation in the scaleless low line anterior foot epidermis.  相似文献   

6.
Unlike normal scutate scales whose outer and inner epidermal surfaces elaborate β (β-keratins) and α (α-keratins) strata, respectively, the scaleless mutant's anterior metatarsal epidermis remains flat and elaborates only an α stratum. Reciprocal epidermal-dermal recombinations of presumptive scale tissues from normal and mutant embryos have demonstrated that the scaleless defect is expressed only by the epidermis. In fact, the scaleless anterior metatarsal epidermis is unable to undergo placode formation. More recently, it has been determined that the absence of epidermal placode morphogenesis into a definitive scale ridge actually results in the establishment of a scale dermis which is incapable of inducing the outer and inner epidermal surfaces of scutate scales. Can the initial genetic defect in the scaleless anterior metatarsal epidermis be overcome by replacing the defective dermis with a normal scutate scale dermis, i.e., a dermis with scale ridges already present? Or, are the genes involved in the production of a β stratum regulated by events directly associated with morphogenesis of the epidermal placode? In the present study, we combined scaleless anterior metatarsal epidermis (stages 36 to 42) with normal scutate scale dermis (stage 40, 41, or 42) old enough to have acquired its scutate scale-inducing ability. After 7 days of growth as chorioallantoic membrane grafts, we observed grossly and histologically, typical scutate scales in these recombinant grafts. Electron microscopic and electrophoretic analyses have verified that these recombinant scales are true scutate scales. The scaleless mutation, known to be expressed initially by the anterior metatarsal epidermis, can be overcome by exposing this epidermis to appropriate inductive cues, i.e., cues that direct the differentiation of the outer and inner epidermal surfaces of the scutate scales and the production of specific structural proteins. We have determined that the time between stages 38 and 39 is the critical period during which the normal scutate scale dermis acquires these inductive abilities.  相似文献   

7.
Epidermal-dermal tissue interactions regulate morphogenesis and tissue-specific keratinization of avian skin appendages. The morphogenesis of scutate scales differs from that of reticulate scales, and the keratin polypeptides of their epidermal surfaces are also different. Do the inductive cues which initiate morphogenesis of these scales also establish the tissue-specific keratin patterns of the epidermis, or does the control of tissue-specific keratinization occur at later stages of development? Unlike feathers, scutate and reticulate scales can be easily separated into their epidermal and dermal components late in development when the major events of morphogenesis have been completed and keratinization will begin. Using a common responding tissue (chorionic epithelium) in combination with scutate and reticulate scale dermises, we find that these embryonic dermises, which have completed morphogenesis, can direct tissue-specific statification and keratinization. In other words, once a scale dermis has acquired its form, through normal morphogenesis, it is no longer able to initiate morphogenesis of that scale, but it can direct tissue-specific stratification and keratinization of a foreign ectodermal epithelium, which itself has not undergone scale morphogenesis.  相似文献   

8.
The keratin polypeptides of the epidermis from the leg scale region of 17-day-old embryonic chicks were extracted as S-carboxymethylated derivatives and characterised by electrophoresis on SDS and pH 9.5 urea gels including a combination of both in two dimensions. Proteins were isolated that gave X-ray diffraction patterns typical of alpha- and beta- (avian feather) keratins. An mRNA fraction was isolated from 17-day-old scale tissue by guanidinium chloride extraction and sucrose gradient fractionation. The mRNA was translated in the wheat germ system to give a major product indistinguishable from the molecular weight class (Mr 14 500) of scale beta-keratin polypeptides. A cDNA library was constructed in pBR322 from a 15 S mRNA subfraction and two recombinant clones were selected by their strong hybridisation to cDNA prepared from the 15 S mRNA. The sequencing of these has yielded details of the relatedness of two scale keratin genes including their 3' untranslated regions. Almost half of the protein sequences of the two homologous scale keratins has been deduced and a notable feature of the scale keratin structure appears to be the presence of at least two sequence domains consisting of 13 amino acid repeats.  相似文献   

9.
The scutate scales are entirely missing in chick embryos homozygous for the gene, “scaleless.” Reticulate scales of this mutant are present; however, they have undergone abnormal morphogenesis into irregular mounds and crevices. The pattern of keratinization seen along the anterior metatarsus of normal embryos differs dramatically from that seen along the anterior metatarsus of scaleless embryos. In contrast, we find that the unique pattern of keratinization seen in the epidermal cells of normal reticulate scales is retained in mutant reticulate scales, even though these scales are morphologically abnormal. We believe that differences in the initial tissue interactions (which establish the inductive ability of the dermis) of these two types of scales are responsible for the differences seen in their responses to the scaleless gene. The pleiotropic nature of the scaleless gene is discussed.  相似文献   

10.
The site of the scaleless gene's activity in the development of abnormal feathers was determined by reciprocally recombining epidermis and dermis between normal and scaleless chick embryos and culturing the recombinants for seven days on the chorioallantoic membrane. When recombined with a common dermal source, feather development is enhanced by scaleless high line as compared to scaleless low line epidermis. Against a common responding tissue, 7-day normal back epidermis, significant differences were not found in feather inducing ability between normal, scaleless high line and scaleless low line dermis. It was concluded that, in relation to abnormal feathering, these tissue interactions reveal that the site of the scaleless gene's activity is the epidermis. A model of tissue interaction in the development of normal and abnormal feathers is presented. According to the model, the focus of the scaleless mutation and the genes accumulated by selection for high or low feather numbers is the epidermis, the effect being that the reactivity of the epidermis to dermal stimuli is altered. Subsequently, the epidermis controls the morphogenetic organization of the dermis. The scaleless dermis is presumed to contain normal positional information for the determination of feather structure and pattern.  相似文献   

11.
Dissociated epidermal cells derived from the backskin of scaleless chick embryos (stage 34 or 35) form larger agglutinates with wheat germ agglutinin (WGA) than epidermal cells from normal embryonic skin. [3H]Acetyl WGA binding to the scaleless cells is twice as great as to normal epidermal cells. Treatment of these cells with concanavalin A (conA) results in equivalent agglutination of both mutant and normal epidermal cells, whereas neither scaleless nor normal epidermal cells are agglutinated by Dolichos biflorus agglutinin (DBA), soybean agglutinin (SBA) or Ulex europeus agglutinin (UEA). This alteration in cell surface carbohydrates may be related to the failure of the scaleless mutant embryonic epidermis to undergo normal morphogenesis.  相似文献   

12.
Morphogenesis of the anterior metatarsal skin (scutate scale region), from 9.5 to 12 days of development, results in the formation of orderly patterned scale ridges. It is after the initial formation of the Definitive Scale Ridge that the characteristic outer and inner epidermal surfaces differentiate. The hard, plate-like beta stratum, with its unique beta keratins, characterizes the epidermis of the outer surface, while the epidermis of the inner surface elaborates an alpha stratum. The anterior metatarsal region of the scaleless mutant does not undergo scale morphogenesis. Therefore, scale ridges do not form nor do the outer and inner epidermal surfaces with their characteristic beta and alpha strata. We have found that the extracellular matrix molecule, tenascin, first appears in the scutate scale dermis at 12 days of development when the scale ridge is established. Tenascin is found in the dermis only under the scale ridge and is not associated with the dermal-epidermal junction. Tenascin is not found in scaleless anterior metatarsal dermis at this time. As outgrowth of the Definitive Scale Ridge takes place, tenascin distribution correlates closely with the formation of the outer epidermal surface of each scale ridge. By 16 days of development tenascin is also found in close association with the dermal-epidermal junction. Tenascin does not appear in scaleless anterior metatarsal dermis until 16 days of development and then it is randomly and sparsely distributed at the dermal-epidermal junction. Tenascin's initial appearance and pattern of distribution in the scutate scale dermis and its abnormal expression in the scaleless dermis suggest that morphogenesis plays a significant role in regulation of its expression.  相似文献   

13.
Keratin proteins synthesized by dorsal or tarsometatarsal embryonic chick epidermis in heterotopic and heterospecific epidermal-dermal recombinants were analyzed by polyacrylamide gel electrophoresis and were compared to those produced by normal nondissociated dorsal and tarsometatarsal embryonic skin, as well as to those produced by control homotopic recombinants. Recombinant skins were grafted on the chick chorioallantoic membrane and grown for 8 or 11 days. Recombinants comprising dorsal feather-forming dermis formed feathers, irrespective of the origin of the epidermis. The electrophoretic band patterns of the keratins extracted from these feathers were of typical feather type. Conversely recombinants comprising tarsometatarsal scale-forming dermis formed scales, irrespective of the origin of the epidermis. The band patterns of the keratins extracted from the epidermis of these scales were of typical scale type. Heterospecific recombinants comprising chick dorsal feather-forming epidermis and mouse plantar dermis gave rise to six footpads arranged in a typical mouse pattern. In these recombinants, the chick epidermis produced keratins, the band pattern of which was of typical chick scale type. These results demonstrate that the dermis not only induces the formation of cutaneous appendages in confirmity with its regional origin, but also triggers off in the epidermis the biosynthesis of either of two different keratin types, in accordance with the regional type (feather, scale, or pad) of cutaneous appendages induced. The possible relationship between region-specific morphogenesis and cytodifferentiation is discussed in comparison with results obtained in other kinds of epithelial-mesenchymal interactions.  相似文献   

14.
Beta-keratins are responsible for the mechanical resistance of scales in reptiles. In a scaleless crotalus snake (Crotalus atrox), large areas of the skin are completely devoid of scales, and the skin appears delicate and wrinkled. The epidermis of this snake has been assessed for the presence of beta-keratin by immunocytochemistry and immunoblotting using an antibody against chicken scale beta-keratin. This antibody recognizes beta-keratins in normal snake scales with molecular weights of 15-18 kDa and isoelectric points at 6.8, 7.5, 8.3 and 9.4. This indicates that beta-keratins of the stratum corneum are mainly basic proteins, so may interact with cytokeratins of the epidermis, most of which appear acidic (isoelectric points 4.5-5.5). A beta-layer and beta-keratin immunoreactivity are completely absent in moults of the scaleless mutant, and the corneous layer comprises a multi-layered alpha-layer covered by a flat oberhautchen. In conclusion, the present study shows that a lack of beta-keratins is correlated with the loss of scales and mechanical protection in the skin of this mutant snake.  相似文献   

15.
Summary The expression of two previously uncharacterized polypeptides produced in epidermal cells of chick reticulate and scutate scales during late embryonic scale histogenesis and in hatchling birds has been studied biochemically and immunologically. These polypeptides have been identified by two-dimensional pH gradient gel electrophoresis as basic in charge, with apparent molecular weights of 20 and 23 kD, and they have been characterized immunologically and by amino acid analysis as non-keratin in nature. Monoclonal antibodies which react with both polypeptides have been used for immunohistochemical and immunogold electron-microscopic localization. Immunoreactivity was observed in suprabasal cells of reticulate scale epidermis, where it codistributed with bundles of -type cytokeratins in the -keratin-rich layers of epidermis known as the alpha stratum and in suprabasal cells of the outer epidermal surface of scutate scales, where it codistributed with -and -type keratin filament bundles in the -keratin-rich layers of epidermis known as the beta stratum.  相似文献   

16.
The polypeptide composition of Chlamydia was examined by acrylamide gel electrophoresis. When the polypeptide patterns of purified infectious elementary bodies (EB) of C. psittaci meningopneumonitis strain, 6BC strain, and C. trachomatis T'ang strain were compared, no significant differences were observed. The polypeptide patterns of whole EB and reticulate bodies (RB) appeared to overlap, but differences were found. In EB cell walls, nine main and several minor bands of polypeptides were observed in gels containing sodium lauryl sulfate, and the eighth main band from the top of the gel stained positive with periodic acid-Schiff reagent. On the other hand, the polypeptides in bands 3, 6, and 8 in EB cell walls were missing or minor in RB cell walls, and the ninth band was clearly stained by PAS. Band 8 was also stained slightly. Purified subunits, which occur as a lattice structure on the inside layer of EB cell walls but are largely missing in RB cell walls, contained bands 4, 6, and 8, and band 8 was PAS positive. These results indicate that significant polypeptide synthesis or reorganization in the cell walls occurs during the growth cycle.  相似文献   

17.
Abstract. The cytokeratin polypeptides of microdissected epidermis and hair follicles from human fetuses (from week 10 of pregnancy until birth) have been analysed by two-dimensional gel electrophoresis. Two-layered epidermis in 10-week fetuses contains major amounts of cytokeratin polypeptides typical of simple epithelia (components Nos. 8, 18, and 19 according to Moll et al. [31]). These cytokeratins are gradually reduced in their relative amounts and eventually disappear in the multilayered epidermis of later stages. At advanced stages of development, cytokeratins characteristic of adult epidermis are detected and finally predominate. These include the large and basic epidermal cytokeratin No. 1 (apparent molecular weight 68,000) which is already present in the three-layered epidermis of 13-week fetuses. Hair follicle germ cells of 13-week fetuses differ from fetal epidermal keratinocytes and show a very simple cytokeratin pattern, dominated by only two major polypeptides (Nos. 5 and 17). More developed hair follicles of 20-week fetuses have established a cytokeratin pattern similar to, but not identical with, that of hair follicles from adult skin. Different staining patterns obtained by indirect immunofluorescence microscopy using cytokeratin antibodies with different specificities suggest that, in three-layered epidermis, different cytokeratin patterns might exist in the specific cell layers. Such a differential location might explain the high complexity of polypeptide components found in fetal skin. Possible contributions of peridermal cytokeratins to this complex pattern of fetal epidermis are discussed.  相似文献   

18.
We have used synaptic plasma membranes (SPMs) and postsynaptic densities (PSDs) to study protein phosphorylation at the synapse in the developing chick forebrain and in 1-day-old chick forebrain following training on a passive avoidance task. Endogenous phosphorylation patterns in SPMs and PSDs prepared by extraction with n-octylglucoside isolated from chick forebrain were investigated by labelling with [32P]ATP. The phosphoprotein components of the SPM and PSD fractions were separated using sodium dodecyl sulphate gradient polyacrylamide gel electrophoresis. Autoradiography and densitometry of the Coomassie Blue protein staining pattern revealed phosphate incorporation into several SPM components including those of molecular mass 52, 37, and 29 kilodaltons (kDa). Bands of similar molecular mass were not phosphorylated in PSD fractions. This difference in phosphorylation between SPMs and PSDs was not due to the detergent n-octylglucoside. In a developmental study in which SPM and PSD fractions were prepared from 1-day-old, 14-day-old, and 21-day-old chickens, the phosphorylation patterns of SPMs were similar throughout, but striking differences occurred in PSDs, both in the level of phosphorylation and in the components phosphorylated. A time-course study was carried out in which phosphorylation of SPMs and PSDs from 1-day-old chicks trained on a passive avoidance task was compared with patterns from control chicks trained on a water-coated bead and untrained chicks. In SPMs prepared from forebrains removed 10 mins following training, a consistent but nonsignificant decrease (-21%) in phosphorylation of a 52 kDa band occurred in chicks with passive avoidance training compared with water-trained and untrained chicks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Steinert [Biochem. J. (1975) 149, 39-48] reported that the alpha-keratin polypeptides (the subunits of the intracellular keratin filaments) of bovine hoof and snout epidermis are the same. We now demonstrate that this is not so: in addition to the seven polypeptides previously identified in hoof epidermis, snout epidermis also contains at least three other polypeptides of higher molecular weight. These unique polypeptides were isolated, purified and characterized. They are chemically and structurally very similar to the other polypeptides of bovine epidermis and readily polymerize in vitro with them to form native-type epidermal keratin filaments.  相似文献   

20.
Using immunocytochemistry at light- and electron-microscope levels, we studied the distribution of three monoclonal antibodies (AE1, AE2, AE3) specific for mammalian alpha-keratins in regenerating lizard epidermis. We also characterized the keratins expressed during this process by immunoblotting after electrophoretic separation. The AE1 antibody is localized in the basal and suprabasal layers of prescaling and scaling epidermis. During the first stages of scale neogenesis, the AE1 antibody also marks the differentiating oberhautchen and beta-layer, but it disappears from these layers as they mature. This antibody does not stain the prekeratinized and keratinized outermost layers in the hinge region. The AE2 antibody labels the superficial wound epidermis, prekeratinizing and keratinized beta- and alpha-layers, but not basal and suprabasal cells. The AE3 antibody labels all living and keratinized epidermal layers, although AE3 immunoreactivity decreases and disappears as the beta-layer matures. The ultrastructural study shows that the AE2 and AE3, but not the AE1, antibodies specifically label small electron-dense areas within the beta-layer, suggesting retention of alpha-keratins. In the stages of tail regeneration examined, immunoblotting with the three antibodies used for the immunolocalization gives a pattern similar to that of the normal epidermis, except distally, where the process of scale differentiation begins. In this region, in addition to the keratin forms discovered in the normal and in proximal regenerating epidermis, an intense low molecular weight band at 40-41 kDa, positive to all three antibodies, is clearly detectable. Furthermore, in the distal region AE1 and AE3 antibodies, but not the AE2, recognize a weak band at 77-78 kDa not present in the normal and proximal epidermis. The localization and the possible role of the different keratins in the regenerating epidermis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号