首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thymus plays a crucial role in the development of T lymphocytes by providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiate into mature T cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of the thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow-derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment, and their complex interactions during the T-cell maturation process are summarized here with the objective of contributing to a better understanding of the function of the thymus, as well as assisting in the search for new therapeutic approaches to improve the immune response in various pathological conditions.Key words: thymus, T-cell maturation, thymic microenvironment, thymocyte differantiation, chemokines, extracellular matrix, thymic nurse cells, metalloproteinases  相似文献   

2.
The thymus plays a crucial role in the development of T lymphocytes providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiation into mature T-cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow–derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment and their complex interactions during the T-cell maturation process with the objective of contributing to a better understanding of the function of the thymus as well as assist in the search for new therapeutic approaches to improve the immune response in various pathological conditions are summarized here.  相似文献   

3.
4.
Kuklina EM 《Ontogenez》2003,34(5):342-357
A review of the main molecular events occurring during differentiation of T-lymphocytes in the thymus: T-cell specialization of early intrathymic precursors, formation and expression of antigen receptor, formation of antigen recognizing cell repertoire, and alpha beta/gamma beta- and CD4/CD8-commitment. The mechanisms of glucocorticoid-induced apoptosis of thymocytes and its blockade during antigen-dependent activation are considered. A special attention is paid to the analysis of intracellular signals underlying the clonal selection of thymocytes.  相似文献   

5.
6.
Fifteen human thymomas were analyzed by immunoperoxidase studies on frozen and paraffin-embedded tissue sections in an attempt to identify the existence of immunologically defined microenvironments. All nine lymphocyte predominant thymomas contained a predominance of lymphocytes bearing the phenotype of cortical thymocytes and dendritic Class II major histocompatibility complex antigen-positive epithelial cells, thus defining cortical-like microenvironments. Medullary-like foci were also seen in all of these cases. Minor phenotypic abnormalities in Leu-2 and -3 antigen expression were seen in three cases. In contrast, the two epithelial predominant thymomas and four mixed thymomas all exhibited features of aberrant microenvironmental differentiation, with only two cases showing demarcation into cortical and medullary foci. A lack of Class II major histocompatibility complex antigens was associated with a decrease in the lymphoid populations and an increase in Leu-1 antigen expression by T cells of otherwise normal cortical phenotype when lymphocytes were present. In contrast, lack of Class I antigen on epithelial cells was not associated with any abnormality in lymphocyte phenotype or microenvironmental organization. We document for the first time abnormal microenvironments in thymomas that may offer insights into understanding normal thymic differentiation.  相似文献   

7.
8.
The thymus is the primary site for generation of naive T-lymphocytes in the young animal. With age, the thymus progressively involutes and fewer mature T-cells are produced and migrate to the periphery. With thymic involution, increased density of sympathetic noradrenergic (NA) innervation and concentration of norepinephrine (NE) have been observed. To determine if the age-related changes in thymocyte differentiation are modified by NE signaling through beta-adrenergic receptors, 2-month (mo) and 18-mo old BALB/c mice were implanted subcutaneously with pellets containing the non-selective beta-adrenoceptor antagonist nadolol. Four and one-half weeks later, thymus and peripheral blood were collected to assess changes in thymocyte differentiation and naive T-cell output by flow cytometric analysis of T-cell subpopulations. In old mice, but not in young mice, thymocyte CD4/CD8 co-expression was altered by beta-adrenoceptor blockade. In nadolol-treated old mice, the frequency of the immature CD4-8- population was increased, and the intermediate CD4+8+ population was reduced. A corresponding increase in the frequency of mature CD4-8+, but not CD4+8- cells was observed. The increase in CD4-8+ cells is most likely not mediated by more CD4-8+ cells undergoing positive selection, because CD3hi expression in the CD4+8+ population was not altered by nadolol. The percentage of CD8+44low naive cells in peripheral blood increased in nadolol-treated mice, suggesting that more CD4-8+ cells were exported from the thymus to the periphery. These results indicate that the age-associated increase in sympathetic NA innervation of the thymus modulates thymocyte maturation. Pharmacological manipulation of NA innervation may provide a novel means of increasing naive T-cell output and improving T-cell reactivity to novel antigens with age.  相似文献   

9.
Antibodies to the peptides that induce differentiation of midgut larval stem cells, the midgut differentiating factors MDF-2, MDF-3, and MDF-4, bind to columnar cells in midgut cultures and in intact midgut of Heliothis virescens, in manners similar to the binding of anti- MDF-1 to those tissues. Antibodies to MDF-2 and MDF-3 also stained droplets in the midgut lumen, suggesting that columnar cells may also release MDF-2- and MDF-3-like cytokines to the lumen. Antibody to MDF-4 exhibited similar staining patterns but also recognized stem and differentiating cells, the presumed targets of peptides that regulate stem cell differentiation. Antibody to MDF-4 also bound to one type of endocrine cell in midgut cultures and in sections of midgut, as well as to the endocrine secretion released both to the midgut lumen and the hemolymph. Antibodies to the MDFs 1, 2, and 3, incubated with cultures of midgut cells, did not appear to prevent differentiation of the stem cells in the cultures but affected viability of mature cells, reflected in increased apoptosis and doubling of the number of differentiating cells compared to controls. Only antibody to MDF-4 induced temporary necrosis and inhibition of population recovery, indicating that MDF4 may be the true differentiation factor. The other MDFs may have additional functions beyond regulation of midgut stem cell differentiation in vivo.  相似文献   

10.
This paper reviews evidence consistent with the Parcellation Conjecture. Briefly, this conjecture states that in postnatal development cortical parcellation processes result in previously combined information processing pathways or structures becoming segregated into relatively isolated modules. Evidence consistent with the parcellation conjecture from several aspects of behavioral development are reviewed, including the development of binocular vision, cross-modal integration, and interhemispheric transfer. Predictions are made in other domains where existing evidence is unclear such as motion and color sensitivity, and somatosensory perception. Finally, we speculatively extend the notion of parcellation to more cognitive domains such as the development of priming and interference effects.  相似文献   

11.
Human thymocyte maturation in vitro: a flow cytometric analysis   总被引:1,自引:0,他引:1  
Using an in vitro culture system, light scatter analyses, and two-color flow cytometry, we provide evidence that the interleukin-2 (IL-2) and transferrin receptors can be induced within 48 hr on nonproliferating immature thymocytes. The thymocytes (greater than 35%) that expressed the transferrin and IL-2 receptors demonstrated nuclear activation as measured by log 90 degrees light scatter analysis. Increases in antigen-receptor-associated T3-antigen expression followed transferrin and IL-2-receptor induction and occurred on maximally activated T4+T8+ thymocytes on Day 3 of culture. Maximal T3 expression did not occur until Days 5-7 and paralleled loss of T4, T8 coexpression, suggesting an association between a mature T3-Ti antigen receptor complex and a mature T4, T8 phenotype.  相似文献   

12.
Fetal thymus organ culture was used to study the expression and function of antigen-specific, major histocompatibility complex-restricted receptors on thymocytes. Receptor gene rearrangement and expression occurred de novo in organ culture indicating that these events are induced in the thymus itself, presumably in response to thymus-derived stimuli. During organ culture a population of immature thymocytes expressing low levels of receptors developed first, and then diminished as mature thymocytes with high levels of receptor expression appeared. Continuous culture with antireceptor antibody modulated receptor from the surfaces of immature thymocytes, but did not prevent their appearance or accumulation. By contrast, appearance of receptor-bearing mature thymocytes was prevented in the presence of antireceptor antibody. These results indicate that the receptor is not essential for the generation of immature thymocytes but is involved in the selection or maintenance of mature cells from this pool.  相似文献   

13.
We studied the effects of the main placental hormone, chorionic gonadotropin, on differentiation of human thymocytes in vitro in the presence of thymic epithelial cells. It was shown that the hormone at a high dose (100 IU/ml) enhanced the epithelium-induced phenotypic maturation of thymocytes, which is registered by an increased expression of the membrane marker CD3 and transition of CD4+8+ thymocytes in the cells with CD4+8- and CD4-8+ phenotypes. In addition, gonadotropin enhanced the proliferative response of thymocytes to the mitogen during their cultivation with the epithelium. The stimulating effect of the hormone on the epithelium-induced differentiation of thymocytes is mediated by the humoral factors of epithelial cells. In addition, gonadotropin at this dose exerts its own differentiating activity with respect to thymocytes and stimulates their phenotypic and functional maturation in a monoculture.  相似文献   

14.
15.
Thapsigargin addition to thymocytes increased cytosolic Ca2+ by a factor of 8.5 with a time for half maximal effect (t1/2) of 2.5 min. Calcium signaling increased mitocondrial and endoplasmic reticulum nitric oxide synthase (NOS) activities by five and six times, with t1/2 of 16 and 48 min, respectively, followed by increases of 140% in intracellular [H2O2], 73% in hydroperoxide content, and 250% in thiobarbituric reactive substance content, with t1/2 of 13, 27, and 30 min, respectively. Mitochondrial dysfunction followed, and was characterized by decreased respiratory control, membrane depolarization, and decrease cytochrome c content release, processes with t1/2 of 101, 129, and 133 min, respectively. Increased UDP-GT gene expression, observed by mRNA synthesis, and the enzymatic activity of this protein had t1/2 of 52 and 187 min, respectively. These events were followed by caspase-3 activation (t1/2 = 210 min) and DNA laddering (t1/2 = 260 min) at the completion of the cell death program. Preincubation of thymocytes with NOS inhibitors (NG-methyl-L-arginine and L-Nomega-nitro-L-arginine methylester) halted the whole process through inhibition of mitochondrial and endoplasmic reticulum NOS activities and of DNA laddering.  相似文献   

16.
During the course of differentiation in the thymus, precursor T cells are negatively selected by a self-tolerance mechanism or positively selected to acquire restriction specificity to self major histocompatibility complexes. We investigated the process of T cell differentiation and those selections using a fetal thymus organ culture with or without cyclosporine A. The agent blocked the maturation step from CD4+8+ double positive cells to mature CD4-8+ or CD4+8- single positive cells. On the other hand, the agent did not inhibit the development of CD3+4-8- T cell receptor (TCR)alpha beta- cells, which were supposed to be T cells bearing gamma delta-TCR chains. These results suggest that the development of thymocytes bearing alpha beta- or gamma delta-TCR chains differ in requirement for thymocyte-stromal cell interaction.  相似文献   

17.
The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.

  相似文献   


18.
Moxibustion is under active research as a complementary and alternative treatment for various diseases such as pain. “Heat-sensitization” responses have been reported during suspended moxibustion, whose occurrence is associated with significantly better therapeutic effects. The present study aimed to investigate the cortical activities of this interesting phenomenon by a standardized low-resolution brain electromagnetic tomography. We performed electroencephalography recording in a group of patients with chronic low back pain before, during, and after moxibustion treatment at Yaoyangguan (DU3) areas. 11 out of 21 subjects experienced strong heat-sensitization during moxibustion, which were accompanied with significant decreases of current densities in the beta frequency bands in prefrontal, primary and second somatosensory, and cingulate cortices, as well as increased current densities in the alpha2 band in the left insula. No changes were detected in patients without sensitization responses, or in the post-moxibustion phase of either group. These data indicated widespread activity changes across different frequency bands during heat-sensitization. Cortical oscillatory activities could be used to evaluate the “heat-sensitization” responses during suspended moxibustion.  相似文献   

19.
The effect of substrate-mediated signals on osteogenic differentiation of hMSCs is studied using a synthetic bone-like material comprising both organic and inorganic components that supports adhesion, spreading, and proliferation of hMSCs. hMSCs undergo osteogenic differentiation even in the absence of osteogenesis-inducing supplements. They exhibit higher expressions of Runx2, BSP, and OCN compared to their matrix-rigidity-matched, non-mineralized hydrogel counterparts. The mineralized-hydrogel-assisted osteogenic differentiation of hMSCs could be attributed to their exposure to high local concentrations of calcium and phosphate ions in conjunction with chemical and topological cues arising from the hydrogel-bound calcium phosphate mineral layer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号