首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heavy meromyosin (HMM) forms characteristic arrowhead complexes with actin filaments in situ. These complexes are readily visualized in sectioned muscle. Following HMM treatment similar complexes appear in sectioned fibroblasts, chondrogenic cells, nerve cells, and several types of epithelial cells. Thin filaments freshly isolated from chondrogenic cells also bind HMM and form arrowhead structures in negatively stained preparations. HMM-filament complexes are prominent in the cortex of a variety of normal metaphase and Colcemid-arrested metaphase cells. There is no detectable binding of HMM with other cellular components such as microtubules, 100-A filaments, tonofilaments, membranes, nuclei, or collagen fibrils. The significance of HMM-filament binding is discussed in view of the finding that arrowhead complexes form in types of cells not usually thought to contain actin filaments.  相似文献   

2.
The production of protoplasts from the pollen of Amaryllis belladonna has facilitated a more direct investigation of the physiological and mechano-chemical basis of streaming. Cytoplasm is removed from an actively streaming protoplast or intact pollen tube and layered on a coated grid in a solution containing a low free calcium ion concentration. Under these conditions 6 nm thin filaments are observed. The thin filaments are morphologically identical with F actin and bind rabbit muscle HMM, forming characteristic arrowhead complexes that are dissociated by subsequent treatment with MgATP.  相似文献   

3.
Teleost retinal cones contract in light and elongate in darkness. This paper describes the disposition of microtubules and cytoplasmic filaments in cone cells of 2 species of fish (Haemulon sciurus and Lutjanus griseus). In Haemulon, the neck-like “myoid” region of the cone changes in length from 5 μ to 75 μ. Maximal observed rates of elongation and contraction are comparable to that of chromosome movement in mitosis (2–3 μ/min). Microtubules presumably participate in cone elongation, since numerous longitudinal microtubules are present in the myoid region, and colchicine blocks dark-induced elongation. Myoid shortening, on the other hand, appears to be an active contractile process. Disruption of microtubules in dark-adapted cones does not produce myoid shortening in the absence of light, and light-induced myoid shortening is blocked by cytochalasin-B. Cone cells possess longitudinally-oriented thin filaments which bind myosin subfragment-1 to form arrowhead complexes typical of muscle actin. Myoid thin filaments are clearly observed in negatively stained preparations of isolated cones which have been disrupted with detergent after attachment to grids. These myoid filaments are not, however, generally preserved by conventional fixation, though bundles of thin filaments are preserved in other regions of the cell. Thus, actin filaments are poorly retained by fixation in precisely the region of the cone cell where contraction occurs. Cone cells also possess longitudinally-oriented thick filaments 130–160Å in diameter. That these thick filaments may be myosin is suggested by the presence of side-arms with approximately 150 Å periodicity. The linear organization of the contractile apparatus of the retinal cone cell makes this cell a promising model for morphological characterization of the disposition of actin and myosin filaments during contraction in a nonmuscle cell.  相似文献   

4.
Harvey J. Marchant 《Planta》1976,131(2):119-120
Summary Filaments associated with chloroplasts in cytoplasmic homogenates of the algae Coleochaete scutata and Mougeotia sp. bind rabbit skeletal muscle heavy meromyosin (HMM) to form arrowhead complexes that could be dissociated with ATP. This result suggests that the filaments are actin which may be involved in the characteristic chloroplast movements exhibited by these algae.  相似文献   

5.
Using a glycerination procedure designed to avoid excessive plasmolysis or disruption of the ectoplasm, microfilaments in bundles at the ectoplasm-endoplasm interface of Nitella internode cell segments were found to bind rabbit heavy meromyosin (HMM) in situ. All HMM arrowheads in a bundle seem to have the same polarity and many lie in register as judged from the electron micrographs; the arrowhead periodicity is approximately 380 . The decorated microfilaments are thus similar to those seen in negatively stained cytoplasmic suspensions of internode cells. In glycerinated material, as well as in suspensions, the microfilaments are closely associated with chloroplasts. The microfilaments lie adjacent to or are attached to the chloroplast envelope. The results provide further evidence that the microfilaments thought to play a role in cytoplasmic streaming in vivo in Nitella consist of actin and suggest that they may be anchored to the chloroplasts.  相似文献   

6.
Heavy meromyosin (HMM) decoration of actin filaments was used to detect the polarity of microfilaments in interphase and cleaving rat kangaroo (PtK2) cells. Ethanol at -20 degrees C was used to make the cells permeable to HMM followed by tannic acid-glutaraldehyde fixation for electron microscopy. Uniform polarity of actin filaments was observed at cell junctions and central attachment plaques with the HMM arrowheads always pointing away from the junction or plaque. Stress fibers were banded in appearance with their component microfilaments exhibiting both parallel and antiparallel orientation with respect to one another. Identical banding of microfilament bundles was also seen in cleavage furrows with the same variation in filament polarity as found in stress fibers. Similarly banded fibers were not seen outside the cleavage furrow in mitotic cells. By the time that a mid-body was present, the actin filaments in the cleavage furrow were no longer in banded fibers. The alternating dark and light bands of both the stress fibers and cleavage furrow fibers are approximately equal in length, each measuring approximately 0.16 micrometer. Actin filaments were present in both bands, and individual decorated filaments could sometimes be traced through four band lengths. Undecorated filaments, 10 nm in diameter, could often be seen within the light bands. A model is proposed to explain the arrangement of filaments in stress fibers and cleavage furrows based on the striations observed with tannic acid and the polarity of the actin filaments.  相似文献   

7.
The mechanism of the movement of leucocytes   总被引:5,自引:0,他引:5  
In a study of the movement of human leucocytes it was clarified that characteristic contraction waves were observed on the cell surface during movement and an initial morphological change directly related to the appearance of the wave originated in the surface of the granuloplasm and not in the cell membrane. From these findings, together with physicochemical properties of the contractile protein from equine leucocytes, it was proposed that the wave observed in moving leucocytes might be conducted, in some way, by contraction and relaxation of the contractile protein in the cells. Myosin A and actin as constituents of the contractile protein were extracted separately from leucocytes in polymerized form, which resemble myosin aggregate and F-actin from muscle, respectively. The thick and thin filaments of about 150 and 80 Å in diameter were observed in glycerinated leucocytes with electron microscopy. When glycerinated leucocytes were incubated with heavy meromyosin (HMM) from rabbit skeletal myosin A, the thin filaments developed a structure resembling the ‘arrowhead structure’ of the HMM F-actin complex in vitro. The thick filaments seemed to correspond to myosin aggregates and the thin ones to filaments containing F-actin.  相似文献   

8.
Ultrastructurally, myoepithelial cells were shown to contain numerous fine filaments in their cytoplasm and resembled smooth muscle cells. The myoepithelial cell of the salivary gland has been considered to play an important role in the secretion of saliva. The present study showed that all the thin filaments (actin filaments) in the myoepithelial cell of the human parotid gland bound heavy meromyosin (HMM) and formed characteristic arrowhead structures. These filaments ran in two opposite directions with the poles at different ends. On the other hand, there was no binding of HMM with thicker filaments (10-nm filaments), plasma membrane, nuclear membrane, collagen fibrils, basement membrane or other cytoplasmic organelles. The present results strongly suggest that myoepithelial cells possess a contractile function parallel to the long axis of the cell for supporting the secretion of saliva in the parotid gland.  相似文献   

9.
Studies were made of the ultracytochemical changes in the cell membrane and microfilaments of colonic epithelial cells during tumorigenesis induced by 1,2-dimethylhydrazine (DMH) in mice fed a high fat diet. The tumor cells showed reduced membrane ATPase activity and loss of contact with neighboring cells. Microfilaments in tumor cells showed an irregular intensity of fluorescent staining. Their actin filaments bound with heavy meromyosin (HMM) had an arrowhead pattern as in normal cells, but these complexes were shortened and detached from the cell membrane. The arrowheads were directed toward the interior in the terminal web of tumor cells. Microfilaments with long rootlets extended to the apical surface of some tumor cells. These results indicate that during development of colonic tumors, the structures of the cell membrane and microfilaments of the cells changes.  相似文献   

10.
Microfilament bundles: I. Formation with uniform polarity   总被引:5,自引:0,他引:5  
The coelomocytes of the sea urchin, Strongylocentrotus droebachiensis, have been used as a model system to investigate the relative orientation of single actin-containing filaments to the cell membrane as they are regrouped in multifilament bundles during a cellular morphogenetic event. In detergent-treated, heavy meromyosin (HMM) incubated and negatively stained cells, the polarity of each microfilament, regardless of whether it occurs singly or in a bundle, is such that the arrowhead complexes formed along the length of each filament by the HMM decoration point inward away from the cell membrane and toward the center of the cell. A mechanism is proposed by which the uniformly polar bundles may be formed.  相似文献   

11.
Actin detected in Mouse Neuroblastoma Cells by Binding of Heavy Meromyosin   总被引:12,自引:0,他引:12  
HEAVY meromyosin (HMM) fragments of myosin from striated muscle specifically bind with actin filaments to form complexes that are readily observed by electron microscopy1 in both negatively-stained preparations and sectioned material. The composite or “decorated filaments” appear like a line of arrowheads. The existence of such decorated filaments in cells or some cell fraction after treatment with HMM indicates that actin is present. Ishikawa et al.2 used this to demonstrate actin in a number of cultured cell types. More recently, other workers have similarly demonstrated actin filaments in slime mould3, amoebae4,5, blood platelets6, microvilli7, macrophages8 and, less convincingly, in sperm tails9 and the mitotic spindle10. We prove here that filaments from the cortical region of mouse neuroblastoma cells bind HMM and therefore contain actin.  相似文献   

12.
Actin filaments in sensory hairs of inner ear receptor cells   总被引:15,自引:11,他引:4       下载免费PDF全文
Receptor cells in the ear are excited through the bending of sensory hairs which project in a bundle from their surface. The individual stereocilia of a bundle contain filaments about 5 nm in diameter. The identity of these filaments has been investigated in the crista ampullaris of the frog and guinea pig by a technique of decoration with subfragment-1 of myosin (S-1). After demembranation with Triton X-100 and incubation with S-1, "arrowhead" formation was observed along the filaments of the stereocilia and their rootlets and also along filaments in the cuticular plate inside the receptor cell. The distance between attached S-1 was 35 nm and arrowheads pointed in towards the cell soma. It is concluded that the filaments of stereocilia are composed of actin.  相似文献   

13.
Spindle- or needle-shaped crystalloids are observed in Sertoli cells of the intersex and experimental cryptorchid swine in the light and electron microscopes. Small crystalloids are also observed in Sertoli cells of the normal swine only by electron microscopy. These crystalloids consist of fine filaments. The filaments are about 5 nm in diameter and arranged parallel to the long axis of the drystalloid. In cross sections of the crystalloid, the close backing of the filaments shows hexagonal arrays. The interfilamentous distance is about 5 nm. In all animals, bundles of short filaments, which are 5nm in diameter, are observed in the basal part of the Sertoli cells. Ultrastructural similarities among the crystalloids, the bundles of fine filaments, and the filamentous layer in the junctional specialization of the Sertoli cell are shown. These morphological similarities suggest that the crystalloids are formed by the aggregation of the bundles in the Sertoli cells of azoospermic testes.  相似文献   

14.
Summary The cytochemistry and ultrastructure of intracytoplasmic filaments of pulmonary lymphatic endothelial cells of neonatal rabbits were studied by comparison with myofilaments of the peribronchial and pulmonary vascular smooth muscle cells. Two types of endothelial filaments were observed: thin filaments (diameter: 50 Å) which lie close to the abluminal cell membrane; and thick filaments (diameter: 90 Å) which are dispersed throughout the cell cytoplasm.Following heavy meromyosin (HMM) treatment, characteristic arrowhead complexes formed in the thin lymphatic endothelial filaments as well as in the actin filaments of the smooth muscle cells. There was no detectable reaction of HMM with the thick filaments.After incubation with EDTA, the thin filaments were labile, and the thick filaments became the major filamentous component in the endothelial cells. In smooth muscle cells, the actin myofilaments were also labile while the 100 Å filaments were stable.These observations support the hypothesis that the actin-like thin endothelial lymphatic filaments form part of a contractile system, while the thick filaments constitute a plastic cell skeleton. The significance of the contractile system in lymphatic endothelial cells might lie in a mechanism for the active regulation of the endothelial intercellular junctions and gaps and hence the permeability of the lymphatic endothelial cell lining.This study was supported by The Council for Tobacco Research—U.S.A. The authors thank Professor Robert C. Rosan, M.D. (Saint-Louis University—U.S.A.) for expert advice. R. Renwart, B. Emanuel and R. Jullet for technical, G. Pison and St. Ons for photographical and N. Tyberghien for secretarial assistance.  相似文献   

15.
Organization of the cross-filaments in intestinal microvilli   总被引:15,自引:15,他引:0       下载免费PDF全文
We studied the arrangement of the cross-filaments in intestinal microvilli to understand how microfilaments interact with the membrane. Observations on thin-sectioned or negatively stained microvilli with the electron microscope demonstrate that the cross-filaments on the core bundle lie opposite to one another and are spaced 32.5 nm apart. In sections grazing through the membranes, the cross-filaments appear as transverse stripes in a barber-polelike arrangement. The cross- filaments point away from the microvillus tip. This subfragments S1 or HMM. The cross filaments are associated not only with the microfilaments but also with electron-dense patches on the inside surface of the membrane. These results suggest the cross-filaments are arranged as a double helix around the core bundle. Furthermore, the cross-filaments can serve as in situ markers for microvillar polarity. Lastly, the cross-filaments interact not only with specific portions on the actin filaments but also with dense patches on the membrane. These observations are summarized in a model of the microvillus cytoskeleton.  相似文献   

16.
Contraction of isolated brush borders from the intestinal epithelium   总被引:31,自引:22,他引:9       下载免费PDF全文
Brush borders isolated from epithelial cells from the small intestine of neonatal rats are able to contract in the presence of ATP and Mg2+; Ca2+ is not required. Contraction is characterized by a pinching-in of the plasma membrane in the region of the zonula adherens and a subsequent rounding of the brush borders. No movement or consistent shortening of the microvilli is observed. The contraction appears to involve the 5- to 7-nm diameter microfilaments in the terminal web which associate with the zonula adherens. These filaments bind heavy meromyosin as do the actin core filaments of the microvilli. A model for contraction is presented in which, in the intact cell, terminal web filaments and core filaments interact to produce shortening of the microvilli.  相似文献   

17.
Actin has been identified in the ciliated protozoon Tetrahymena paravorax on the basis of the ultrastructural detection of filaments typically decorated with heavy meromyosin (HMM) in glycerinated microstome cells. These filaments are widely distributed in endoplasmic and cortical regions and can form bundles. They are particularly numerous in elongating cells; HMM-binding filaments run approximately parallel to rib microtubules in the ectoplasm of the right wall of the buccal cavity and seem to extend to the cytopharyngeal region, suggesting some role of actin in maintenance of the crest-trough pattern of ribbed wall and/or in formation of food vacuoles. Extensive actin bundles are observed below some membranellar areas and are thought to follow the course of the microtubular “deep fiber bundle.” The “fine filamentous reticulum” underlying the oral ribs and the “apical ring” extending beneath kinetosomes of ciliary couplets display filaments that do not bind HMM and are ? 14 nm in diameter. No evidence for actin in these structures was obtained in the present study. The “specialized cytoplasm” of the cytostome-cytopharyngeal region appears as an undecorated reticulum with 20 nm-spaced nodes. Occasionally HMM-binding filaments were found inside the macronucleus, just beneath its envelope. Actin is suggested to be involved in cell shaping and in control of the transport of food vacuoles.  相似文献   

18.
Hensel W 《Planta》1988,173(1):142-143
When statocytes of cress root-caps were incubated in an extraction medium containing phalloidin, bundles of microfilaments (6.6±2.4 nm in diameter) were found in the cortical cytoplasm. The inclusion of heavy-meromyosin in this medium demonstrated an arrowhead pattern on the filaments indicative of the presence of actin.  相似文献   

19.
Small JV  Celis JE 《Cytobiologie》1978,16(2):308-325
Treatment of spread, cultured cells with Triton X-100 followed by negative staining reveals the organization of the unextracted intracellular filamentous elements: actin, microtubules and the 100 angstrom filaments. The present report describes the organization of the actin-like filaments in human skin fibroblasts and mouse 3 T 3 cells. As shown in earlier studies, the cytoplasmic stress fibres were seen to be composed of bundles of colinear actin-like filaments. In addition to these large stress fibres much smaller bundles of thin filaments as well as randomly oriented thin filaments were also observed. A thick bundle of thin filaments, 0.2 microm to 0.5 microm in diameter, was found to delimit the concave cell edges most prominent in well-spread stationary cells. The leading edge and ruffled border of human skin fibroblasts appeared as a broad web, of meshwork of diagonally oriented thin filaments interconnecting radiating, linear bundles of thin filaments about 0.1 microm in diameter. These bundles corresponding to the microspikes described earlier ranged from about 1.5 microm in length and were separated by 1 microm to 3 microm laterally. The leading edge of 3 T 3 cells showed a similar organization but with fewer radiating thin filament bundles. Both the filaments in the bundles and in the meshwork formed arrowhead complexes with smooth muscle myosin subfragment - 1 which were unipolar and directed towards the main body of the cell. The findings are discussed in relation to the mechanisms of non-muscle cell motility.  相似文献   

20.
Caldesmon (CaD), a component of microfilaments in all cells and thin filaments in smooth muscle cells, is known to bind to actin, tropomyosin, calmodulin, and myosin and to inhibit actin-activated ATP hydrolysis by smooth muscle myosin. Thus, it is believed to regulate smooth muscle contraction, cell motility and the cytoskeletal structure. Using bladder smooth muscle cell cultures and RNA interference (RNAi) technique, we show that the organization of actin into microfilaments in the cytoskeleton is diminished by siRNA-mediated CaD silencing. CaD silencing significantly decreased the amount of polymerized actin (F-actin), but the expression of actin was not altered. Additionally, we find that CaD is associated with 10 nm intermediate-sized filaments (IF) and in vitro binding assay reveals that it binds to vimentin and desmin proteins. Assembly of vimentin and desmin into IF is also affected by CaD silencing, although their expression is not significantly altered when CaD is silenced. Electronmicroscopic analyses of the siRNA-treated cells showed the presence of myosin filaments and a few surrounding actin filaments, but the distribution of microfilament bundles was sparse. Interestingly, the decrease in CaD expression had no effect on tubulin expression and distribution of microtubules in these cells. These results demonstrate that CaD is necessary for the maintenance of actin microfilaments and intermediate-sized filaments in the cytoskeletal structure. This finding raises the possibility that the cytoskeletal structure in smooth muscle is affected when CaD expression is altered, as in smooth muscle de-differentiation and hypertrophy seen in certain pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号