首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between CD40 and its ligand, CD154, has been shown to play a role in the onset and maintenance of inflammatory disease. Contributing to this process is the ability of CD40 to signal monocyte and macrophage inflammatory cytokine production. We have shown that this event is dependent on Src family tyrosine kinase activity and the subsequent activation of ERK1/2. To address the role of TNFR-associated factor (TRAF) family members in facilitating this signaling pathway, we transfected a CD40-deficient macrophage cell line with wild-type human CD40, or with CD40 containing disrupted TRAF binding sites. Ligation of either wild-type CD40, or a CD40 mutant unable to bind TRAF2/3/5, resulted in the stimulation of inflammatory cytokine production. However, ligation of a CD40 mutant lacking a functional TRAF6 binding site did not initiate inflammatory cytokine production, and this mutant was found to be defective in CD40-mediated activation of ERK1/2, as well as IkappaB kinase (IKK) and NF-kappaB. Likewise, introduction of a dominant-negative TRAF6 into a wild-type (CD40(+)) macrophage cell line resulted in abrogation of CD40-mediated induction of inflammatory cytokine synthesis. Finally, treatment of monocytes with a cell-permeable peptide corresponding to the TRAF6-binding motif of CD40 inhibited CD40 activation of ERK1/2, IKK, and inflammatory cytokine production. These data demonstrate that TRAF6 acts as a critical adapter of both the Src/ERK1/2 and IKK/NF-kappaB proinflammatory signaling pathways in monocytes and macrophages.  相似文献   

2.
3.
The emerging role of CD40, a tumor necrosis factor (TNF) receptor family member, in immune regulation, disease pathogenesis, and cancer therapy necessitates the analysis of CD40 signal transduction in a wide range of tissue types. In this study we present evidence that the CD40-interacting proteins TRAF2 and TRAF6 play an important physiological role in CD40 signaling in nonhemopoietic cells. Using mutational analysis of the CD40 cytoplasmic tail, we demonstrate that the specific binding of TRAF2 to CD40 is required for efficient signaling on the NF-kappaB, Jun N-terminal protein kinase (JNK), and p38 axis. In fibroblasts lacking TRAF2 or in carcinoma cells in which TRAF2 has been depleted by RNA interference, the CD40-mediated activation of NF-kappaB and JNK is significantly reduced, and the activation of p38 and Akt is severely impaired. Interestingly, whereas the TRAF6-interacting membrane-proximal domain of CD40 has a minor role in signal transduction, studies utilizing TRAF6 knockout fibroblasts and RNA interference in epithelial cells reveal that the CD40-induced activation of NF-kappaB, JNK, p38, and Akt requires the integrity of TRAF6. Furthermore, we provide evidence that TRAF6 regulates CD40 signal transduction not only through its direct binding to CD40 but also indirectly via its association with TRAF2. These observations provide novel insight into the mechanisms of CD40 signaling and the multiple roles played by TRAF6 in signal transduction.  相似文献   

4.
CD40 is a member of the tumor necrosis factor receptor family that mediates a number of important signaling events in B-lymphocytes and some other types of cells through interaction of its cytoplasmic (ct) domain with tumor necrosis factor receptor-associated factor (TRAF) proteins. Alanine substitution and truncation mutants of the human CD40ct domain were generated, revealing residues critical for binding TRAF2, TRAF3, or both of these proteins. In contrast to TRAF2 and TRAF3, direct binding of TRAF1, TRAF4, TRAF5, or TRAF6 to CD40 was not detected. However, TRAF5 could be recruited to wild-type CD40 in a TRAF3-dependent manner but not to a CD40 mutant (Q263A) that selectively fails to bind TRAF3. CD40 mutants with impaired binding to TRAF2, TRAF3, or both of these proteins completely retained the ability to activate NF-kappaB and Jun N-terminal kinase (JNK), implying that CD40 can stimulate TRAF2- and TRAF3-independent pathways for NF-kappaB and JNK activation. A carboxyl-truncation mutant of CD40 lacking the last 32 amino acids required for TRAF2 and TRAF3 binding, CD40(Delta32), mediated NF-kappaB induction through a mechanism that was suppressible by co-expression of TRAF6(DeltaN), a dominant-negative version of TRAF6, but not by TRAF2(DeltaN), implying that while TRAF6 does not directly bind CD40, it can participate in CD40 signaling. In contrast, TRAF6(DeltaN) did not impair JNK activation by CD40(Delta32). Taken together, these findings reveal redundancy in the involvement of TRAF family proteins in CD40-mediated NF-kappaB induction and suggest that the membrane-proximal region of CD40 may stimulate the JNK pathway through a TRAF-independent mechanism.  相似文献   

5.
A novel mechanism for TNFR-associated factor 6-dependent CD40 signaling   总被引:2,自引:0,他引:2  
Members of the TNFR family play critical roles in the regulation of the immune system. One member of the family critical for efficient activation of T-dependent humoral immune responses is CD40, a cell surface protein expressed by B cells and other APC. The cytoplasmic domain of CD40 interacts with several members of the TNFR-associated factor (TRAF) family, which link CD40 to intracellular signaling pathways. TRAF2 and 6 appear to play particularly important roles in CD40 signaling. Previous studies suggest that the two molecules have certain overlapping roles in signaling, but that unique roles for each molecule also exist. To better define the roles of TRAF2 and TRAF6 in CD40 signaling, we used somatic cell gene targeting to generate TRAF-deficient mouse B cell lines. A20.2J cells deficient in TRAF6 exhibit marked defects in CD40-mediated JNK activation and the up-regulation of CD80. Our previous experiments with TRAF2-deficient B cell lines suggest that TRAF6 and TRAF2 may have redundant roles in CD40-mediated NF-kappaB activation. Consistent with this hypothesis, we found CD40-mediated activation of NF-kappaB intact in TRAF6-deficient cells and defective in cells lacking both TRAF2 and TRAF6. Interestingly, we found that TRAF6 mutants defective in CD40 binding were able to restore CD40-mediated JNK activation and CD80 up-regulation in TRAF6-deficient cells, indicating that TRAF6 may be able to contribute to certain CD40 signals without directly binding CD40.  相似文献   

6.
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are mediators of many members of the TNF receptor superfamily and can activate both the nuclear factor kappaB (NF-kappaB) and stress-activated protein kinase (SAPK; also known as c-Jun N-terminal kinase) signal transduction pathways. We previously described the involvement of a TRAF-interacting molecule, TRAF-associated NF-kappaB activator (TANK), in TRAF2-mediated NF-kappaB activation. Here we show that TANK synergized with TRAF2, TRAF5, and TRAF6 but not with TRAF3 in SAPK activation. TRAF2 and TANK individually formed weak interactions with germinal center kinase (GCK)-related kinase (GCKR). However, when coexpressed, they formed a strong complex with GCKR, thereby providing a potential mechanism for TRAF and TANK synergy in GCKR-mediated SAPK activation, which is important in TNF family receptor signaling. Our results also suggest that TANK can form potential intermolecular as well as intramolecular interactions between its amino terminus and carboxyl terminus. This study suggests that TANK is a regulatory molecule controlling the threshold of NF-kappaB and SAPK activities in response to activation of TNF receptors. In addition, CD40 activated endogenous GCKR in primary B cells, implicating GCK family proteins in CD40-mediated B-cell functions.  相似文献   

7.
8.
Liu J  Yoshida Y  Yamashita U 《FEBS letters》2007,581(26):5043-5049
Reactive oxygen species (ROS) produced by the innate immune system work as effectors to destroy pathogens and to control cellular responses. However, their role in the adaptive immune response remains unclear. Here we studied the effect of exogenous ROS on CD40-induced B cell activation. H2O2 treatment inhibited CD40-induced immunoglobulin production of B cells, DNA binding of NF-kappaB, IkappaBalpha degradation and IKK phosphorylation. On the other hand, H2O2 treatment did not induce obvious B cell death after 30 min of stimulation. Although the ligation of anti-CD40 antibody was not disturbed by H2O2, TRAF2 recruitment to CD40 was inhibited. These results suggest that exogenous ROS play a negative role in CD40 signaling during B cell activation.  相似文献   

9.
To investigate CD40 signaling complex formation in living cells, we used green fluorescent protein (GFP)-tagged CD40 signaling intermediates and confocal life imaging. The majority of cytoplasmic TRAF2-GFP and, to a lesser extent, TRAF3-GFP, but not TRAF1-GFP or TRAF4-GFP, translocated into CD40 signaling complexes within a few minutes after CD40 triggering with the CD40 ligand. The inhibitor of apoptosis proteins cIAP1 and cIAP2 were also recruited by TRAF2 to sites of CD40 signaling. An excess of TRAF2 allowed recruitment of TRAF1-GFP to sites of CD40 signaling, whereas an excess of TRAF1 abrogated the interaction of TRAF2 and CD40. Overexpression of TRAF1, however, had no effect on the interaction of TRADD and TRAF2, known to be important for tumor necrosis factor receptor 1 (TNF-R1)-mediated NF-kappaB activation. Accordingly, TRAF1 inhibited CD40-dependent but not TNF-R1-dependent NF-kappaB activation. Moreover, down-regulation of TRAF1 with small interfering RNAs enhanced CD40/CD40 ligand-induced NF-kappaB activation but showed no effect on TNF signaling. Because of the trimeric organization of TRAF proteins, we propose that the stoichiometry of TRAF1-TRAF2 heteromeric complexes ((TRAF2)2-TRAF1 versus TRAF2-(TRAF1)2) determines their capability to mediate CD40 signaling but has no major effect on TNF signaling.  相似文献   

10.
Induction of tissue factor expression in endothelial cells via ligation of CD40 probably figures prominently in the pathogenesis of prevalent inflammatory diseases, including atherosclerosis. However, the molecular mechanisms of tissue factor gene expression triggered by CD40 ligand (CD40L) in this cell type remain unknown. We demonstrate here that the tissue factor promoter region -278 bp to +121 bp contains the CD40L-responsive elements, consisting of activator protein 1 (AP-1)+/-, nuclear factor (NF) kappaB-, and Egr-1-binding sites. Mutations of either the AP-1- or NF-kappaB-binding sites markedly reduced the CD40L-dependent promoter activation. The AP-1 and NF-kappaB sites displayed constitutive and CD40L-enhanceable DNA binding activity, respectively. Of note, mutation of the Egr-1-binding sites, previously not associated with CD40 signaling, impaired activation of the tissue factor promoter. Accordingly, CD40L strongly induced Egr-1 protein expression and DNA binding activity to all three bindings sites. In contrast to CD40L, other established inducers of tissue factor in endothelial cells, interleukin-1beta or tumor necrosis factor alpha, did not increase the expression of Egr-1. In conclusion, induction of tissue factor gene expression in human endothelial cells by CD40L involves AP-1 and NF-kappaB as well as Egr-1, a pathway previously not implicated in CD40 signaling and distinct from that employed by certain other proinflammatory cytokines.  相似文献   

11.
The Epstein-Barr virus (EBV) transforming protein LMP1 appears to be a constitutively activated tumor necrosis factor receptor (TNFR) on the basis of an intrinsic ability to aggregate in the plasma membrane and an association of its cytoplasmic carboxyl terminus (CT) with TNFR-associated factors (TRAFs). We now show that in EBV-transformed B lymphocytes most of TRAF1 or TRAF3 and 5% of TRAF2 are associated with LMP1 and that most of LMP1 is associated with TRAF1 or TRAF3. TRAF1, TRAF2, and TRAF3 bind to a single site in the LMP1 CT corresponding to amino acids (aa) 199 to 214, within a domain which is important for B-lymphocyte growth transformation (aa 187 to 231). Further deletional and alanine mutagenesis analyses and comparison with TRAF binding sequences in CD40, in CD30, and in the LMP1 of other lymphycryptoviruses provide the first evidence that PXQXT/S is a core TRAF binding motif. The negative effects of point mutations in the LMP1(1-231) core TRAF binding motif on TRAF binding and NF-kappaB activation genetically link the TRAFs to LMP1(1-231)-mediated NF-kappaB activation. NF-kappaB activation by LMP1(1-231) is likely to be mediated by TRAF1/TRAF2 heteroaggregates since TRAF1 is unique among the TRAFs in coactivating NF-kappaB with LMP1(1-231), a TRAF2 dominant-negative mutant can block LMP1(1-231)-mediated NF-kappaB activation as well as TRAF1 coactivation, and 30% of TRAF2 is associated with TRAF1 in EBV-transformed B cells. TRAF3 is a negative modulator of LMP1(1-231)-mediated NF-kappaB activation. Surprisingly, TRAF1, -2, or -3 does not interact with the terminal LMP1 CT aa 333 to 386 which can independently mediate NF-kappaB activation. The constitutive association of TRAFs with LMP1 through the aa 187 to 231 domain which is important in NF-kappaB activation and primary B-lymphocyte growth transformation implicates TRAF aggregation in LMP1 signaling.  相似文献   

12.
Ligation of CD40 has been shown to induce/stimulate the expression of tumor necrosis factor-alpha (TNF-alpha) in microglial cells. This study delineates the mechanism by which CD40 ligation regulates the expression of TNF-alpha in BV-2 microglial cells. There was very little induction of TNF-alpha by ligation of CD40 alone by either cross-linking antibodies against CD40 or recombinant CD40 ligand (CD154). The absence of any increase in TNF-alpha production by CD40 ligation alone even in CD40-overexpressed BV-2 microglial cells suggest that signal transduced by the ligation of CD40 alone is not sufficient for strong induction of TNF-alpha. However, CD40 ligation markedly induced the production of TNF-alpha as well as the expression of TNF-alpha mRNA in interferon-gamma (IFN-gamma)-stimulated BV-2 glial cells. Ligation of CD40 in CD40-overexpressed cells markedly enhanced the expression of TNF-alpha in the presence of IFN-gamma. To understand the mechanism of CD40 ligation-mediated induction/stimulation of TNF-alpha, we investigated the role of nuclear factor-kappaB (NF-kappaB) and C/EBPbeta. IFN-gamma alone was able to induce the activation of NF-kappaB as well as C/EBPbeta. However, CD40 ligation alone in the presence or absence of CD40 overexpression induced the activation of only NF-kappaB and not that of C/EBPbeta, suggesting that the activation of NF-kappaB alone by CD40 ligation is not sufficient to induce the expression of TNF-alpha and that the activation of C/EBPbeta is also necessary for strong induction of TNF-alpha. Consistently, a dominant-negative mutant of p65 (Delta(p65)) and that of C/EBPbeta (DeltaC/EBPbeta) inhibited the expression of TNF-alpha in BV-2 microglial cells stimulated with the combination of IFN-gamma and CD40 ligand. Taken together, these studies suggest that activation of both NF-kappaB and C/EBPbeta is important for strong induction of TNF-alpha and that CD40 ligation regulates the expression of TNF-alpha by modulating the activation of only NF-kappaB but not that of C/EBPbeta.  相似文献   

13.
14.
Chen H  Wu Y  Zhang Y  Jin L  Luo L  Xue B  Lu C  Zhang X  Yin Z 《FEBS letters》2006,580(13):3145-3152
Inducible heat shock protein 70 (Hsp70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a crucial signaling transducer that regulates a diverse array of physiological and pathological processes and is essential for activating NF-kappaB signaling pathway in response to bacterial lipopolysaccharide (LPS). Here we report a novel mechanism of Hsp70 for preventing LPS-induced NF-kappaB activation in RAW264.7 macrophage-like cells. Our results show that Hsp70 can associate with TRAF6 physically in the TRAF-C domain and prevent TRAF6 ubiquitination. The stimulation of LPS dissociates the binding of Hsp70 and TRAF6 in a time-dependent manner. Hsp70 inhibits LPS-induced NF-kappaB signaling cascade activation in heat-shock treated as well as Hsp70 stable transfected RAW264.7 cells and subsequently decreases iNOS and COX-2 expression. Two Hsp70 mutants, Hsp70DeltaC(1-428aa) with N-terminal ATPase domain and Hsp70C(428-642aa) with C-terminal domain, lack the ability to influence TRAF6 ubiquitination and TRAF6-triggered NF-kappaB activation. Taken together, these findings indicate that Hsp70 inhibits LPS-induced NF-kappaB activation by binding TRAF6 and preventing its ubiquitination, and results in inhibition of inflammatory mediator production, which provides a new insight for analyzing the effects of Hsp70 on LPS-triggered inflammatory signal transduction pathways.  相似文献   

15.
We investigated whether human monocyte-derived dendritic cells (DCs) differed from tonsillar B cells in the set of cell fate genes they express constitutively and in the way these genes are affected after CD40 ligation. In particular, Bcl-2, TNF receptor-associated factor-2 (TRAF2), and TRAF4 were clearly inducible via CD40 in B cells but not in DCs. DCs, unlike B cells, were induced to increase expression of IL-1beta, IL-1Ra, IL-8, IL-12 p40, RANTES, macrophage inflammatory protein-1alpha, and monocyte chemoattractant protein-1 after CD40 ligation. We next tested whether CD40-induced signaling pathways were different in DCs vs B cells. In DCs, as in B cells, CD40 ligation activated p38 mitogen-activated protein kinase (MAPK), its downstream target, MAPKAPK-2, and the c-Jun N-terminal kinase. The p38 MAPK-specific inhibitor, SB203580, blocked CD40-induced MAPKAPK-2 activation, but did not affect activation of c-Jun N-terminal kinase. Furthermore, unlike in B cells, extracellular signal-regulated kinase-1 and -2 were activated after CD40 ligation in DCs. SB203580 strongly blocked CD40-induced IL-12 p40 production in DCs at both mRNA and protein levels, while having minimal effect on CD40-induced expression of the chemokine RANTES. In contrast, no detectable IL-12 p40 protein was secreted in CD40-stimulated B cells. Furthermore, CD40-induced mRNA expression of cellular inhibitor of apoptosis protein-2 was also dependent on the p38 MAPK pathway in DCs and differed compared with that in B cells. In conclusion, CD40 induces distinct programs in DCs and B cells, and the set of p38 MAPK-dependent genes in DCs (IL-12 p40 and cellular inhibitor of apoptosis protein-2) is different from that in B cells (IL-10 and IL-1beta).  相似文献   

16.
17.
CD40 function is initiated by tumor necrosis factor (TNF) receptor-associated factor (TRAF) adapter proteins, which play important roles in signaling by numerous receptors. Characterizing roles of individual TRAFs has been hampered by limitations of available experimental models and the poor viability of most TRAF-deficient mice. Here, B cell lines made deficient in TRAF2 using a novel homologous recombination system reveal new roles for TRAF2. We demonstrate that TRAF2 participates in synergy between CD40 and B cell antigen receptor signals, and in CD40-mediated, TNF-dependent IgM production. We also find that TRAF2 participates in the degradation of TRAF3 associated with CD40 signaling, a role that may limit inhibitory actions of TRAF3. Finally, we show that TRAF2 and TRAF6 have overlapping functions in CD40-mediated NF-kappaB activation and CD80 up-regulation. These findings demonstrate previously unappreciated roles for TRAF2 in signaling by TNF receptor family members, using an approach that facilitates the analysis of genes critical to the viability of whole organisms.  相似文献   

18.
Tumor necrosis factor receptor-associated factors (TRAFs) associate with the CD40 cytoplasmic domain and initiate signaling after CD40 receptor multimerization by its ligand. We used saturating peptide-based mutational analyses of the TRAF1/TRAF2/TRAF3 and TRAF6 binding sequences in CD40 to finely map residues involved in CD40-TRAF interactions. The core binding site for TRAF1, TRAF2, and TRAF3 in CD40 could be minimally substituted. The TRAF6 binding site demonstrated more amino acid sequence flexibility and could be optimized. Point mutations that eliminated or enhanced binding of TRAFs to one or both sites were made in CD40 and tested in quantitative CD40-TRAF binding assays. Sequences flanking the core TRAF binding sites were found to modulate TRAF binding, and the two TRAF binding sites were not independent. Cloned stable transfectants of human embryonic kidney 293 cells that expressed wild type CD40 or individual CD40 mutations were used to demonstrate that both TRAF binding sites were required for optimal NF-kappaB and c-Jun N-terminal kinase activation. In contrast, p38 mitogen-activated protein kinase activation was primarily dependent upon TRAF6 binding. These studies suggest a role in CD40 signaling for competitive TRAF binding and imply that CD40 responses reflect an integration of signals from individual TRAFs.  相似文献   

19.
20.
PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR−/− mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号