首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
Two new ion-pair complexes, [FBrBzPyN(CH3)2]2[Ni(mnt)2] (1) and [FBrBzPyN(CH3)2][Ni(mnt)2] (2) (mnt2− = maleonitriledithiolate, [FBrBzPyN(CH3)2]+ = [1-(4′-fluoro-2′-bromobenzyl)-4-dimethylaminopyridinium]) have been prepared and characterized by elemental analyses, UV, IR, single crystal X-ray diffraction and magnetic susceptibility. The cations (D) and the anions (A) in 1 stack into a 1D alternating column (i.e., of type ?DDADDADD?) via short S?Br, N?F, C?N interactions, and C-H?Br hydrogen bonds. The cation-cation π?π stacking interactions within the columns give further rise to a 2D network structure. Compound 2 forms a 3D structure in which the Ni(III) ions stack into a uniform 1D zigzag magnetic chain through Ni?S, Ni?Ni, or π?π interactions with a Ni?Ni distance of 4.024 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 is expected to be diamagnetic, and 2 exhibits an interesting spin-gap transition (Δ/kb = 460.6 K) around 155 K.  相似文献   

2.
Syntheses, structural characterizations, magnetic behaviors and theoretical analyses of two new ion-pair complexes, [IFBzIQl][Ni(mnt)2](1) and [IClBzIQl]2[Ni(mnt)2]2 · MeCN(2) [IFBzIQl][Ni(mnt)2] ([IFBzIQl]+ = 1-(2′-fluoro-4′-iodobenzyl)isoquinolinium, [IClBzIQl]+ = 1-(2′-chloro-4′-iodobenzyl)isoquinolinium, mnt2− = maleonitriledithiolate), have been investigated. In crystal of 1, the [Ni(mnt)2] anions and the [IFBzIQl]+ cations stack into an alternating column through π?π stacking interactions. The anions of both 1 and 2 form a dimer via π?π stacking and S?S short interactions between the [Ni(mnt)2] anions. The overlapping mode of two neighboring [Ni(mnt)2] anions in the dimer is the Ni-ring fashion with a Ni?Ni distance of 4.076 Å for 1, and ring-ring fashion with the Ni?Ni and S?S distances being 4.395 and 3.593 Å for 2. Some weak interactions such as π?π, C?N, C-H?F or C-H?N in 1 and 2 play a crucial role in stacking and stabilizing the crystal lattice, and give a 3D network structure and exchange pathways of the magnetic interaction for 1 and 2. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.8-300 K show that the overall magnetic behavior indicates the presence of antiferromagnetic interaction, while 2 exhibits an activated magnetic behavior in the high-temperature region (HT) together with a Curie tail in the low-temperature region (LT).  相似文献   

3.
Two new molecular magnets, based on [Ni(mnt)2] monoanion, [DiBrBzPy][Ni(mnt)2] (1) and [DiBrBzIQl][Ni(mnt)2] (2) ([DiBrBzPy]+ = 1-(3′,5′-dibromobenzyl)pyridinium, [DiBrBzIQl]+ = 1-(3′,5′-dibromobenzyl)isoquinolinium and mnt2− = maleonitriledithiolate), were prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. The [Ni(mnt)2] anions and the cations of 1 and 2 are alternately stacked and form 1D column via π?π stacking interactions between the [Ni(mnt)2] anions and the neighboring cations. Some weak Ni?N, C?N interactions and CH?Br, CH?N hydrogen bonds between the adjacent columns further generate a 3D network structure. Magnetic susceptibility measurements show that both 1 and 2 exhibit the typical magnetic behavior of a spin gap system with an energy gap of 1151.9 K for 1 and 73.9 K for 2.  相似文献   

4.
Two new molecular solids, [BzPyNH2][Ni(mnt)2](1) and [2-NpCH2PyNH2][Ni(mnt)2](2) (mnt2− = maleonitriledithiolate, [BzPyNH2]+ = 1-benzyl-2-aminopyridinium and [2-NpCH2PyNH2]+ = 1-(2′-naphthylmethylene)-2-aminopyridinium) have been characterized structurally and magnetically. The Ni(Ш) ions of 1 and 2 form a 1D magnetic chain within a [Ni(mnt)2] column through Ni?N or π?π interactions. Some weak interactions observed in 1 and 2 give further rise to a 2D structure. The overlapping fashions of the [Ni(mnt)2] anions are different when the 2-aminopyridine ring was fixed and the phenyl ring changed into the naphthyl ring of the cation. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 is weak antiferromagnetic coupling, while 2 exhibits a novel and interesting spin-gap transition around 140 K with Δ/kb = 381.4 K.  相似文献   

5.
Two novel molecular magnetic materials, [RBzTPP][Ni(mnt)2] (mnt2− = maleonitriledithiolate, [RBzTPP]+ = 4-R-benzyltriphenylphosphinium; R = CN (1), Cl (2)) were synthesized and characterized by X-ray diffraction, IR spectroscopy, and magnetic susceptibility measurements. In crystal of 1, the [Ni(mnt)2] anions form a dimer via Ni?S and π?π stacking interactions between Ni(mnt)2 planes, and the C-H?Ni and C-H?N H-bonding interactions are found between the [Ni(mnt)2] anions and the neighboring [CNBzTPP]+ cations. The anions and cations of 2 stack into well-segregated columns in the solid state; and the Ni(III) ions form a 1D alternating chain in a Ni(mnt)2 column through intermolecular Ni?S, or π?π interactions with the Ni?Ni distances of 3.900, 4.198, and 4.165 Å. Magnetic susceptibility measurements for these complexes in the temperature range 1.8-300 K show that the overall magnetic behavior for 1 and 2 indicates the presence of antiferromagnetic interaction, but 1 exhibits an activated magnetic behavior in the high-temperature (HT) region together with a Curie tail in the low-temperature (LT) region.  相似文献   

6.
Syntheses, crystal structures and magnetic properties of two salts, [FBzTPP][Ni(mnt)2](1) and [FBzTPP]2[Cu(mnt)2](2) ([FBzTPP]+ = 1-(4′-fluorobenzyl)triphenylphosphinium, mnt2− = maleonitriledithiolate), are investigated. In 1, the anions and cations stack into well-segregated columns, and the Ni(III) ions form a 1D alternating chain in a [Ni(mnt)2] column through intermolecular Ni?S and π?π interactions with the Ni?Ni distances of 3.939, 4.057 and 4.101 Å, and the C-H?N hydrogen bonds are found between the [Ni(mnt)2] anion and the neighboring [FBzTPP]+ cation. The [Cu(mnt)2]2− anions in 2 do not form a column and no weak interactions exist between the anions duo to isolation of the [FBzTPP]+ cations, while C-H?F and C-H?S hydrogen bonds were found in 2. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 46 K, and antiferromagnetic interaction (θ = −49.0 K) in the high-temperature phase (HT) and spin gap (Δ/kb = 88.2 K) in the low-temperature phase (LT), while 2 shows a very weak antiferromagnetic coupling behavior with θ = −1.33 × 10−2 K.  相似文献   

7.
Two novel ion-pair complexes, [RBzIQl]+[Ni(mnt)2] (mnt2− = maleonitriledithiolate, [RBzIQl]+ = 4-R-benzylisoquinolinium; R = H (1), Cl (2)) have been characterized structurally and magnetically. The anions and [BzIQl]+ cations of 1 form 1D column of alternating between cations and anions via π?π stacking interaction between Ni(mnt)2 plane and isoquinoline ring, and the Ni(mnt)2 anions between adjacent columns exist C?N, C?N, and N?N interaction. The anions and cations of 2 stack into well-segregated columns in the solid state; and the Ni(III) ions form a 1D zigzag chain in a Ni(mnt)2 column through intermolecular Ni?S, S?S, Ni?Ni or π?π interactions. The chain is uniform in 2 with the Ni?Ni distances of 3.784 Å. Magnetic susceptibility measurements for these complexes in the temperature range 1.8-300 K show that 1 exhibits antiferromagnetic coupling behavior, and 2 exhibits unusual magnetic phase transitions around 45 K. The overall magnetic behavior for 2 indicates the presence of antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT).  相似文献   

8.
Three new ion-pair complexes, [4RBzDMAP]2[Cu(mnt)2] (mnt2− = maleonitriledithiolate; [4RBzDMAP]+ = 1-(4′-R-benzyl)-4-dimethylaminopyridinium, R = F(1), Cl(2) and Br(3)) were synthesized and characterized by elemental analyses, IR, UV, single crystal X-ray diffraction and magnetic measurements. The [Cu(mnt)2]2− anions and the cations stack alternately and form a 1D column via C-H···S, C-H···π or C-H···Cu interactions for 1 and 2. While the cations stack into a column though π···π or C-H···π interactions between pyridine and phenyl rings for 1 and 3. The change of the molecular topology of the counteraction when the 4-substituted group in the benzyl ring have been changed from F or Cl to Br atom, results in the difference in the crystal system, space group and the stacking mode of the cations and anions of 1, 2 and 3. Some weak hydrogen bonds between the adjacent columns further generate a 3D network structure. It is interesting that 1 and 2 exhibits antiferromagnetic coupling with θ = −2.372 K and θ = −14.732 K, while 3 shows weak ferromagnetic coupling feature with θ = 0.381 K.  相似文献   

9.
Two tellurium ligands 1-(4-methoxyphenyltelluro)-2-[3-(6-methyl-2-pyridyl)propoxy]ethane (L1) and 1-ethylthio-2-[2-thienyltelluro]ethane (L2) have been synthesized by reacting nucleophiles [4-MeO-C6H4Te] and [C4H3S-2-Te] with 2-[3-(6-methyl-2-pyridyl)propoxy]ethylchloride and chloroethyl ethyl sulfide, respectively. Both the ligands react with HgBr2 resulting in complexes of stoichiometry [HgBr2 · L1/L2] (1/4), which show characteristic NMR (1H and 13C{1H}). On crystallization of 1 from acetone-hexane (2:1) mixture, the cleavage of L1 occurs resulting in 4-MeOC6H4HgBr (2) and [RTe+→HgBr2]Br (3) (where R = -CH2CH2OCH2CH2CH2-(2-(6-CH3-C5H3N))). The 2 is characterized by X-ray diffraction on its single crystal. It is a linear molecule and is the first such system which is fully characterized structurally. The Hg-C and Hg-Br bond lengths are 2.085(6) and2.4700(7) Å. The distance of four bromine atoms (3.4041(7)-3.546(7) Å) around Hg (cis to C) is greater than the sum of van der Waal’s radii 3.30 Å. This mercury promoted cleavage is observed for an acyclic ligand of RArTe type for the first time and is unique, as there appears to be no strong intramolecular interaction to stabilize the cleavage products. The 4 on crystallization shows the cleavage of organotellurium ligand L2 and formation of a unique complex [(EtS(CH2)2SEt)HgBr(μ-Br)Hg(Br)(μ-Br)2Hg(Br)(μ-Br)BrHg(EtS(CH2)2SEt)] · 2HgBr2 (5), which has been characterized by single crystal structure determination and 1H and 13C{1H} NMR spectra. The elemental tellurium and [C4H3SCH2]2 are the other products of dissociation as identified by NMR (proton and carbon-13). The cleavage appears to be without any transmetalation and probably first of its kind. The centrosymmetric structure of 5 is unique as it has [HgBr3] unit, one Hg in distorted tetrahedral geometry and one in pseudo-trigonal bipyramidal one. The molecule of 5 may also be described as having [(EtSCH2CH2SEt)HgBr]+ [HgBr3] units, which dimerize and co-crystallize with two HgBr2 moieties. There are very weak Hg?Br interactions between co-crystallized HgBr2 units and rest of the molecule. [Hg(3)-Br(1)/Hg(3)-Br(4) = 3.148(1)/3.216(1) Å]. The bridging Hg?Br distances, Hg(2)-Br(4)′, Hg(2)′-Br(4) and Hg(1)-Br(2), are from 2.914(1) to 3.008(1) Å.  相似文献   

10.
A series of mononuclear organotin(IV) complexes of the types, R3SnL {R = C4H9 (1), C6H11 (2), CH3 (3) and C6H5 (4)}, R2SnClL {R = C4H9 (5), C2H5 (7) and CH3 (9)} and R2SnL2 {R = C4H9 (6), C2H5 (8) and CH3 (10)}, have been synthesized, where L = 4-(4-methoxyphenyl)piperazine-1-carbodithioate. The ligand-salt and the complexes have been characterized by Raman, FT-IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy and elemental microanalysis (CHNS). The spectroscopic data substantiate coordination of the ligands to the organotin moieties. The structures of complexes 4 and 6 have been determined by single-crystal X-ray diffraction and illustrate the asymmetric bidentate bonding of the ligand. The packing diagrams indicate O···H and π···H intermolecular interactions in complex 4 and intermolecular S2C···H interactions in complex 6, resulting in layer structures for both complexes. A subsequent antimicrobial study indicates that the compounds are active biologically and may well be the basis for a new class of fungicides.  相似文献   

11.
Two novel ion-pair complexes, 1-(4′-bromo-2′-fluorobenzyl)isoquinolinium-bis(maleonitrile dithiolato)nickel(III), [BrFBzIQl] · Ni(mnt)2 · 0.5MeCN (1) and 1-(4′-bromo-2′-flourobenzyl)-quinolinium-bis(maleonitriledithiolato)nickel(III), [BrFBzQl] · Ni(mnt)2 (2) have been characterized structurally and magnetically. The anions and cations of 1 stack into columns in the solid state, respectively; and the Ni(III) ions form uniform stacking column with the Ni?Ni distances 4.061 Å within a column through intermolecular Ni?S, S?S, Ni?Ni or π?π interactions, while 2 forms 1D column of alternating between cations and anions via the hydrogen bonds, C?N, C?N, N?C, and π?π interactions. The changes of coupling constants were observed in these two complexes at 85 K for 1 and 70 K for 2. It is interesting that 1 undergoes a transition from antiferromagnetic to ferromagnetic phase and 2 does counter to that of 1.  相似文献   

12.
Selective substitution of the chlorine atom coordinated to cobalt in the paramagnetic Mo3(CoCl)S4(dmpe)3Cl3 (dmpe = 1,2-bis(dimethylphosphanyl) ethane) complex with a S = 1/2 ground state has been achieved by iodine oxidation to afford the also paramagnetic [Mo3(CoI)S4(dmpe)3Cl3]I ([1]I) salt with a S = 1 ground state in almost quantitative yield. Replacement of chorine by iodine has no significant effect on the structural and electrochemical properties of the Mo3CoS4 system. Metathesis of the [1]I salt with the paramagnetic nickel anionic dithiolate [Ni(mnt)2] (mnt = maleonitrilodithiolate) affords [1]2[Ni(mnt)2]. The stoichiometry evidenced by X-ray analysis reveals that reduction of the [Ni(mnt)2] radical to the corresponding diamagnetic closed shell [Ni(mnt)2]2− dianion, presumably via dismutation, has occurred during the metathesis process. The crystal structure of [1]2[Ni(mnt)2] consists of [Ni(mnt)2]2− dianions sandwiched by two cluster 1+ cations which yield {1+·[Ni(mnt)2]2−·1+} subunits arranged along the crystallographic c axis. Magnetic susceptibility measurements for [1]2[Ni(mnt)2] show a χT product of 0.99 emu K/mol largely unchanged in the 10-300 K range. This behavior agrees with the presence of an S = 1 cluster 1+ cation while the Ni(mnt)2 moiety does not contribute to the paramagnetism of the sample.  相似文献   

13.
Three new ion-pair complexes (m-MPYNN)2Ni(mnt)2 (1), (p-MPYNN)2Ni(mnt)2 (2) and (p-MPYNN)2Cu(mnt)2 (3) (m- or p-MPYNNI = [3- or4- (4,4,5,5-tetramethyl-1-oxido-3-oxyl-4,5-dihydro-3H-imidazol-2′-yl)-1-methylpyridinium] iodide, mnt = maleonitriledithiolate) have been prepared and characterized by elemental analyses, IR, single crystal X-ray diffraction and magnetic susceptibility. In complex 1, the m-MPYNN cations form a centrosymmetric dimer, and the [Ni(mnt)2]2− anion lies on a center of inversion. Complexes 2 and 3 show layered packing, and the p-MPYNN cations lie between the layers of the anions. Magnetic susceptibility measurements in the temperature range 2-300 K show that the three complexes exhibit weak antiferromagnetic behaviors. The behavior of complex 1 was explained with the singlet-triplet model.  相似文献   

14.
Synthesis of complexes with the formulations [M(CPI)2Cl2] (M = Zn, 1; M = Cd, 4) and [M(CPI)6](X)2 (M = Zn, X = NO3, 2; X = ClO4, 3; M = Cd, X = NO3, 5; X = ClO4, 6) have been achieved from the reactions of MCl2, M(NO3)2·xH2O and M(ClO4)2·xH2O (M = Zn, Cd) with 1-(4-cyanophenyl)-imidazole (CPI). Complexes 1-6 have been characterized by elemental analyses and spectral studies (IR, 1H, 13C NMR, electronic absorption and emission). Molecular structures of 1, 2, 3 and 6 have been determined crystallographically. Weak interaction studies on the complexes revealed presence of various interesting motifs resulting from C-H···N, C-H···Cl and π-π stacking interactions. The complexes under study exhibit strong luminescence at ∼450 nm in DMSO at room temperature.  相似文献   

15.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   

16.
Two salts consisting of ammonium-crown ether supramolecular cation with bis(maleonitriledithiolato)copperate (II), (NH4)2(15-crown-5)3[Cu(mnt)2] (1) and (NH4)2(benzo-15-crown-5)4[Cu(mnt)2] · 0.5H2O (2), have been synthesized and structurally characterized. The distinct structures of supramolecular cation, an unusual triple-decker dication in 1 and a sandwich dimer in 2, were observed. X-band EPR studies on the single crystals of both 1 and 2 have been carried out at room temperature, which revealed that 1 possesses a single resonance line whereas 2 shows a perfect hyperfine structure. The spin-density distribution in the anionic moiety of 2 is calculated on DFT method and compared well with the experimental data.  相似文献   

17.
Five novel heterometallic Ni/Zn coordination compounds [Ni(en)3][ZnCl4] (1), [Ni(en)(Hea)2][ZnCl4] (2), [Ni(dien)2][ZnCl4] (3), [Ni(en)3][ZnCl4] · 2DMSO (4) and [Ni(en)3][Zn(NCS)4] · CH3CN (5), where en = ethylenediamine (ethane-1,2-diamine), Hea = monoethanolamine (2-aminoethanol) and dien = diethylenetriamine (1,4,7-triazaheptane), have been synthesized by means of the open-air reaction of zinc oxide, nickel chloride (or nickel powder), NH4X (X = Cl, NCS) and ligand (en, dien, Hea) in non-aqueous solvents, such as DMSO, DMF, CH3OH and CH3CN. The choice of a counter-anion in the initial ammonium salt as well as selection of the ligand and solvent provides an effortless approach to the controlled assembly of two- or three-dimensional extended networks assisted by hydrogen bonding. Crystallographic investigations reveal that 1, 2 and 5 possess 3D, while 3 and 4 exhibit 2D H-bonded crystal structures. The structures of the compounds exhibit six-coordinated Ni(II) centers and four-coordinated Zn(II) centers in distorted octahedral and tetrahedral geometries, respectively.  相似文献   

18.
Three new mercury(II) coordination polymers, [Hg2(μ-bpa)(μ-SCN)2(μ-CH3COO)2]n (1), [Hg2(μ-4-bpdb)1.5(μ-CH3COO)(μ1,1- SCN)(μ1,3-SCN)(SCN)]n · CH3CN (2) and [Hg(μ-3-bpdb)(CH3COO)2]n (3) {(bpa = 1,2-bis(4-pyridyl)ethane, 4-bpdb) = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene and 3-bpdb = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene, have been synthesized and characterized by CHN elemental analysis and IR spectroscopy. The single crystal X-ray data show the compound 1 is two-dimensional coordination polymer as a result of simultaneously bridging 1,2-bis(4-pyridyl)ethane, acetate and thiocyanate ligands. The single-crystal X-ray data of the compound 2 show that the complex to be a two-dimensional polymer, one of Hg atoms has four-coordinate and one of them has seven-coordinate. Three SCN anions show three different coordination modes with terminal, μ1,1-bridge and μ1,3-bridge fashions. The structural studies of compound 3 show the structure may be considered a one-dimensional coordination polymer of mercury(II) consisting of linear chains formed by a bridging 3-bpdb ligand. The thermal stabilities of these compounds were studied by thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

19.
A series of diorganotin (IV) complexes of the types of R2SnCl(SSCC3H3N2) (R = CH31, nBu 2, C6H53 and C6H5CH24), R2Sn(SSCC3H3N2)2 (R = CH35, nBu 6, C6H57 and C6H5CH28) and R2Sn(SSCC3H2N2) (R = CH39, nBu 10, C6H511 and C6H5CH212) have been obtained by reactions of 4(5)-imidazoledithiocarboxylic acid with diorganotin (IV) dichlorides in the presence of sodium ethoxide. All complexes are characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. Also, the complexes 1, 7 and 9 are characterized by X-ray crystallography diffraction analyses, which reveal that the complex 1 is monomeric structure with five-coordinate tin (IV) atom, the complex 7 is monomeric structure with six-coordinate tin (IV) atom and the complex 9 is one-dimensional chain with five-coordinate tin (IV) atom.  相似文献   

20.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号