首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, complexes of Zn(II), Cd(II) and Co(II) (1-3) with N-benzyloxycarbonylglycine have been synthesized and characterized. The complexes adopt tetrahedral, pentagonal-bipyramidal and octahedral geometry, respectively. The structure of the polymeric cadmium complex was resolved by single crystal X-ray analysis. The cadmium ion has a distorted pentagonal-bipyramidal coordination formed by two water molecules and two N-benzyloxycarbonylglycinato ligands (N-Boc) coordinated in different fashions, one as bidentate and the second connecting three cadmium atoms. In a rather complicated 2D supramolecular structure, the phenyl rings interact mutually exclusively by the CH?π interactions.Investigation of the antimicrobial activity of the obtained complexes and N-benzyloxycarbonylglycine revealed that the ligand does not inhibit the growth of Candida albicans, whereas the newly synthesized complexes suppress the growth of this human fungal pathogen.  相似文献   

2.
The preparations are reported of the ‘extended reach’ ligand N,N-o-phenylene-dimethylenebis(pyridin-4-one) (o-XBP4) and of a range of its metal complexes with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II), two of which have been shown by X-ray studies to have polymeric structures. In the compound [Mn(o-XBP4)(H2O)2(NO3)](NO3) the o-XBP4 ligands link ‘Mn(H2O)2(NO3)’ units into chains which are then cross-linked into sheets by the bridging action of the coordinated nitrate. In [Cu(o-XBP4)(NO3)2] chains are also formed by the bridging action of the o-XBP4 ligands but here they simply pack trough-in-trough with no nitrate cross-linking. X-band EPR spectra are reported for these and the other Mn and Cu compounds as are relevant spectroscopic results for the other complexes.  相似文献   

3.
Two ligands have been prepared in which N,O-bidentate chelating pyrazolyl-phenolate units, based on 3-(2-hydroxyphenyl)pyrazole, are connected via methylene linkages to aromatic (1,4-phenylene or 3,3′-biphenylene) spacers. In each case the two N,O-donor units are too far apart to chelate to a single metal ion. Complexes of both ligands with Co(II), Cu(II) and Zn(II) were prepared and structurally characterised; in all cases the complexes are dinuclear double helicates M2L2, with each four-coordinate metal ion bound by a chelating unit from each of the two ligands in the complex. For Co(II) and Zn(II) the two M(NO) planes at each metal are close to perpendicular, indicative of a geometry which may be described as approximately distorted tetrahedral; for the Cu(II) complexes the angle between the two Cu(NO) planes is less, indicative of a distortion towards a more planar coordination geometry.  相似文献   

4.
Copper complexes of N,N′-di(aminoethylene)-2,6-pyridinedicarbonylamine and bis-(N,N-dimethylethyl)-2,6-pyridinedicarboxamide have been studied by glass electrode potentiometry, NMR, UV and IR spectroscopy as potential anti-inflammatory agents for the alleviation of inflammation associated with rheumatoid arthritis. The protonation and formation constants with Cu(II), Zn(II) and Ca(II), determined at 25 °C and an ionic strength of 0.15 mol dm−3 were used to calculate the copper plasma mobilizing index of the ligands. Spectroscopic studies suggested that metal ion complexation promotes deprotonation and coordination of the amide nitrogens resulting in overall tetragonal distorted copper complexes. Bio-distribution and dermal absorption studies showed the complexes to have relatively long biological half-lives with 50% of the injected dose remaining in the body 24 h after administration.  相似文献   

5.
《Inorganica chimica acta》2002,328(1):111-122
The electrochemical oxidation of anodic metal (nickel, copper, zinc and cadmium) in acetonitrile solutions containing N,N′-bis[(4-methylphenyl)sulfonyl]ethylenediamine H2L and an additional nitrogen coligand, such as 1,10-phenanthroline, yielded mixed complexes of general formula [ML(phen)2] (M=Ni, Cu, Zn and Cd). The compounds have been characterized by microanalysis, IR and UV-Vis (Ni, Cu complexes) spectroscopy, FAB mass spectrometry, 1H NMR spectroscopic studies (Zn, Cd complexes) and EPR spectroscopy (Cu and Ni complexes). All compounds have also been characterized by single crystal X-ray diffraction. The molecular structures of these compounds consist of individual monomeric molecules in which the metal atom is in an [MN6] distorted octahedral environment.  相似文献   

6.
The metal ion coordinating properties of the ligands N,N-bis(2-methylquinoline)-2-(2-aminoethyl)pyridine (DQPEA) and N,N-bis(2-methylquinoline)-2-(2-aminomethyl)pyridine (DQPMA) are presented. DQPEA and DQPMA differ only in that DQPEA forms six-membered chelate rings that involve the pyridyl group, whereas DQPMA forms analogous five-membered chelate rings.These two ligands illustrate the application of a ligand design principle, which states that increase of chelate ring size in a ligand will result in increase in selectivity for smaller relative to larger metal ions. The formation constants (log K1) of DQPEA and DQPMA with Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) are reported. As expected from the applied ligand design principle, small metal ions such as Ni(II) and Zn(II) show increases in log K1 with DQPEA (six-membered chelate ring) relative to DQPMA (five-membered chelate ring), while large metal ions such as Cd(II) and Pb(II) show decreases in log K1 when the chelate ring increases in size. In order to further understand the steric origin of the destabilization of complexes of metal ions of differing sizes by the six-membered chelate ring of DQPEA, the structures of [Zn(DQPEA)H2O](ClO4)2 (1) [triclinic, , a = 9.2906(10), b = 10.3943(10), c = 17.3880(18) Å, α = 82.748(7)°, β = 88.519(7)°, γ = 66.957(6)°, Z = 4, R = 0.073] and [Cd(DQPEA)(NO3)2] (2) [monoclinic, C2/c, a = 22.160(3), b = 15.9444(18), c = 16.6962(18) Å, β = 119.780(3)°, Z = 8, R = 0.0425] are reported. The Zn in (1) is five-coordinate, with a water molecule completing the coordination sphere. The Cd(II) in (2) is six-coordinate, with two unidentate nitrates coordinated to the Cd. It is found that the bonds to the quinaldine nitrogens in the DQPEA complexes are considerably stretched as compared to those of analogous TPyA (tri(pyridylmethyl)amine) complexes, which effect is attributed to the greater steric crowding in the DQPEA complexes. The structures are analyzed for indications of the origins of the destabilization of the complex of the large Cd(II) ion relative to the smaller Zn(II) ion. A possible cause is the greater distortion of the six-membered chelate ring in (2) than in (1), as evidenced by torsion angles that are further away from the ideal values in (2) than in (1). Fluorescence properties of the DQPMA and DQPEA complexes of Zn(II) and Cd(II) are reported. It is found that the DQPEA complex of Zn(II) has increased fluorescence intensity compared to the DQPMA complex, while for the Cd(II) complex the opposite is found. This is related to the greater strain in the six-membered chelate ring of the Cd(II) DQPEA complex as compared to the Zn(II) complex, with resulting poorer overlap in the Cd-N bond, and hence greater ability to quench the fluorescence in the Cd(II) complex.  相似文献   

7.
The synthesis and characterization of Pd(II) complexes with the general formula cis-[Pd(L-O,S)2] (HL = N,N-diethyl-N′-benzoylthiourea, N,N-diisobutyl-N′-benzoylthiourea or N,N-dibenzyl-N′-benzoylthiourea) and trans-[PdCl2(HL-S)2] (HL = N,N-diphenyl-N′-benzoylthiourea, N,N-di-n-butyl-N′-benzoylthiourea or N,N-diisopropyl-N′-benzoylthiourea) are reported. These complexes were formed from the reaction between PdCl2 and N,N-di(alky/aryl)-N′-benzoylthiourea in acetonitrile with the formulation dependent on the nature of HL. The new Pd(II) complexes have been characterized by analytical and spectral (FT-IR, UV-Vis, 1H NMR and 13C NMR, Mass) techniques. The molecular structures of two of the complexes (1 and 5) have been conformed by X-ray crystallography. Complex 1 shows cytotoxicity against human breast cancer cells.  相似文献   

8.
Formation (affinity) constants for 1:1 complexes of N-(2-acetamido)iminodiacetic acid (ADAH2) with Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) have been determined. Probable structures of the various metal chelates existing in solution are discussed. Values for the deprotonation of the amide group in [Cu(ADA)] and subsequent hydroxo complex formation are also reported. The use of ADA as a buffer is considered in terms of metal buffers complexes which can be formed at physiological pH, i.e., at pH 7.0 there is essentially no free metal ion in 1:1 M2+ to ADA solutions.  相似文献   

9.
The equilibrium constants and rate constants of the reactions between N,N′-ethylenebis(salicylideneiminato)copper(II) ([Cu(salen)]) and metal(II,I) ions in acetonitrile have been spectrophotometrically determined. [Cu(salen)] acts as a didentate ligand to form a dinuclear complex. The rate constants for the very labile Mn(II), Fe(II), and Zn(II) ions were directly evaluated using a variable flow-rate instrument that was newly constructed for this study. The rate constants of the dinuclear complex formation for a series of metal(II) ions vary in parallel with those of the acetonitrile solvent exchange on the corresponding metal(II) ions. This finding indicates that the dinuclear complex formation reaction of the metal(II) ions proceeds via almost the same reaction mechanism as for the acetonitrile solvent exchange reaction.  相似文献   

10.
Two new mixed ligand complexes of copper(II) with N,N,N,N″,N″-pentamethyldiethylenetriamine and polypyridine ligands have been prepared and characterized by means of spectroscopic, magnetic and single-crystal X-ray diffraction methods. These two complexes are isomorph and isostructure in which the coordination polyhedron about the copper(II) ion is distorted square pyramidal. [Cu(PMDT)(bipy)]2+ and [Cu(PMDT)(phen)]2+ show an absorption wavelength maximum at 625 and 678 nm, respectively, assigned to the d-d transition. Antibacterial, antifungal and superoxide dismutase activities of these complexes have also been measured. It was observed that [Cu(PMDT)(bipy)](ClO4)2 was more effective against P. Pyocyanea and Klebsiella sp. than S. aureus. Similarly, Fusarium sp. was highly susceptible against [Cu(PMDT)(bipy)](ClO4)2 but less susceptible against [Cu(PMDT)(phen)](ClO4)2.  相似文献   

11.
The formation of Cd(II) and Co(II) complexes with N-methylethylenediamine (men) has been studied at 298 K in dimethylsulfoxide (dmso) in an ionic medium set to 0.1 mol dm−3 with Et4NClO4 in anaerobic conditions by means of potentiometric, UV-Vis, calorimetric and FT-IR technique. Mononuclear MLj (M=Cd, Co; j=1-3) complexes are formed in exothermic reactions, whereas the entropy changes oppose the complexes formation. The results are discussed in terms of different basicities and steric requirements and the whole of the thermodynamic data reported till now for the two ions with a number of diamines are summarized to visualize the selectivity of the ligands. The dioxygen uptake of Co(men)2 species has also been studied by means of UV-Vis and EPR techniques. The kinetic parameters and stability constants obtained for the formation of the superoxo and μ-peroxo species are discussed in terms of solvent effect and steric hindrance due to methyl group.Cyclic voltammetry was used to confirm the stability constant for the Co(dmen)2 (dmen=N,N-dimethylethylenediamine) superoxo adduct formation but was not successful to investigate this Co(men)2-O2 system.  相似文献   

12.
5-(4-(N-tert-Butyl-N-aminoxylphenyl))pyrimidine (RL, 4PPN) forms crystallographically isostructural and isomorphic pseudo-octahedral M(RL)2(hfac)2 complexes with M(hfac)2, M = Zn, Cu, Ni, Co, and Mn. Multiple close contacts occur between sites of significant spin density of the organic radical units. Magnetic behavior of the Zn, Cu, Ni, Co complexes appears to involve multiple exchange pathways, with multiple close crystallographic contacts between sites that EPR (of 4PPN) indicates to have observable spin density. Powder EPR spectra at room temperature and low temperature are reported for each complex. Near room temperature, the magnetic moments of the complexes are roughly equal to those expected by a sum of non-interacting moments (two radicals plus ion). As temperature decreases, AFM exchange interactions become evident in all of the complexes. The closest fits to the magnetic data were found for a 1-D Heisenberg AFM chain model in the Zn(II) complex (J/k = (?)7 K), and for three-spin RL—M—RL exchange in the other complexes (J/k = (?)26 K, (?)3 K, (?)6 K, for Cu(II), Ni(II), and Co(II) complexes, respectively).  相似文献   

13.
《Inorganica chimica acta》2009,362(14):5085-524
New, heteroleptic zinc and cobalt complexes with tri-tert-butoxysilanethiolate and imidazole co-ligands are characterized by crystal structure studies. The ligands exhibit different coordination modes to Co(II) ions: NOS2 (with methanol as O-donor ligand) in 2, NO2S2 in 2′′, N2S2 in 1, and to Zn(II) ions: N2S2 in 3 and N3S in 4. Complex 2′ is a structural analog of cobalt-substituted active site of alcohol dehydrogenase. All four-coordinate Co(II) and Zn(II) complexes have tetrahedral geometry. Solution and solid state electronic spectra of cobalt(II) complexes are discussed and compared to literature data available for the cobalt-substituted liver alcohol dehydrogenase and sorbitol dehydrogenase. The EPR spectra of all cobalt complexes exhibit at 77 K a characteristic broad signal with g ∼3.6 and 5.6, strongly indicating a high-spin state, S = 3/2, of Co(II) complexes.  相似文献   

14.
New tetradentate ligands 2-(2-mercaptoethylthio)-N-(pyridin-2-ylmethyl)acetamide H2L1 and 2-chloro-2-(2-mercaptoethylthio)-N-(pyridin-2-ylmethyl)acetamide H2L2 were synthesised from the reaction of 2-aminomethanepyridine with 1,4-dithian-2-one and 3-chloro-1,4-dithian-2-one, respectively. Monomeric complexes of these ligands, of general formulae K[CrIII(Ln)Cl2], K2[MnII(Ln)Cl2] and [M(Ln)] (M = Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) or Hg(II); n = 1, 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR and mass spectral studies, magnetic moment measurements, elemental analysis, metal content and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II) complexes, square planar for Ni(II) and Cu(II) complexes and tetrahedral for the Fe(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes. The study of complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1).  相似文献   

15.
Complexes of Zn(II), Cu(II) and Co(II) with either N-(2-methylpyridyl)-3-thienyl-alkyl-carboxamide or N-(2-pyridyl)-3-thienylalkyl-carboxamide groups have been prepared and characterized. Crystal structures of ten new complexes are reported and discussed. N-(2-Methylpyridyl)-3-thienyl-alkyl-carboxamide exhibits both uni- and bidentate behavior. With all ligands, bidentate complexation is through the carbonyl oxygen and pyridine nitrogen atoms (O, N) and the amide nitrogen atom remains protonated. The electrochemical behavior and the infrared spectra of selected complexes are discussed.  相似文献   

16.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

17.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

18.
Five diethylgallium complexes of type Et2GaL [(L = N-(4-methoxy) benzylidenethiobenzahydrazonato (1), N-(3,4-dimethoxy)benzylidenethio benzahydrazonato (2), N-(4-N,N-dimethylamino)benzylidenethiobenza hydrazonato (3), N-(2-naphthyl)methylenethiobenzahydrazonato (4), N-(9-anthryl)methylenethiobenzahydrazonato (5)] have been synthesized by the reaction of triethylgallium with appropriate N-arylmethylene thiobenzahydrazones. The compounds obtained have been characterized by elemental analysis, 1H NMR, IR and mass spectroscopies, respectively. The solid structure of 3 has been determined by X-ray single crystal analysis, in which Ga atom is four coordinate. The photoluminescent property of complex 1 was studied. The maximum emission wavelength is 475 nm upon radiation by UV light.  相似文献   

19.
The structures of the solvated iron(II) and iron(III) ions have been studied in solution and solid state by extended X-ray absorption fine structure (EXAFS) in three oxygen donor solvents, water, dimethylsulfoxide (Me2SO), N,N′-dimethylpropyleneurea (DMPU), and one sulfur donor solvent, N,N-dimethylthioformamide (DMTF); these solvents have different coordination and solvation properties. In addition, the structure of hexakis(dimethylsulfoxide)iron(III) perchlorate has been determined crystallographically to support the determination of the corresponding solvate in solution. The hydrated, the dimethylsulfoxide and N,N-dimethylthioformamide solvated iron(II) ions show regular octahedral coordination in both solution and solid state with mean Fe-O, Fe-O, and Fe-S bond distances of 2.10, 2.10, and 2.52 Å, respectively, whereas the N,N′-dimethylpropyleneurea iron(II) solvate is five-coordinated, d(Fe-O) = 2.06 Å. The compounds vary in color from light green (hydrate) to dark orange or red (DMPU). The hydrated iron(III) ion in aqueous solution and the dimethylsulfoxide solvated iron(III) ions in solution and solid state show the expected octahedral coordination, the Fe-O bond distances are 2.00 Å for both, whereas the N,N′-dimethylpropyleneurea iron(III) solvate is found to be five-coordinated with a mean Fe-O bond distance of 1.99 Å. The N,N-dimethylthioformamide solvated iron(III) ion in the solid perchlorate salt is tetrahedrally four-coordinated, the mean Fe-S bond distance is 2.20 Å. Iron(III) is reduced with time to iron(II) in N,N-dimethylthioformamide solution. The compounds vary in color from pale yellow (hydrate) to blackish red (DMPU).  相似文献   

20.
Copper(II) complexes of n-alkyl-2-hydroxy-1-naphthaldimine Schiff bases (with n-alkyl: n-octyl, and n-dodecyl) have been synthesized, to study steric and electronic effects of long alkyl chain substituents on their structure and properties. These complexes have been characterized with FT-IR, UV-Vis, magnetic susceptibility and cyclic voltammetry both in nitrogen and carbon dioxide atmosphere. Metal-ligand coordination is inferred from the shifting of the νCN stretching vibration mode in the 1610-1620 cm−1 region when compared to that of the free ligand. The UV-Vis spectra show one band around 640 nm typical for square planar Cu(II) complexes. Results obtained from cyclic voltammetry indicate electrocatalytic reduction of carbon dioxide around −0.90 V (versus Ag/AgCl). Bis(N-n-octyl-2-hydroxy-1-naphthaldiminato)-copper(II) has been studied with X-ray diffraction. The molecular structure shows the copper atom in a planar environment and the n-octyl chains having thermal disorder. The crystal packing shows stacked units intermolecularly separated by 3.33 Å, probably due to π-π interactions between naphthyl groups, and Cu-O and O-O separations of 3.95 and 3.42 Å, respectively. The magnetic susceptibility data between 10 and 300 K are indicative of diluted paramagnetic behavior. Density functional theory calculations of spin density for the n-octyl complex shows the unpaired electron localized along the planar CuO2N2 moiety. The calculated electrostatic potential show electron rich regions on the oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号