首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The distorted square-planar complexes [Pd(PNHP)Cl]Cl (1) (PNHP = bis[2-(diphenylphosphino)ethyl]amine), [M(P3)Cl]Cl [P3 = bis[2-(diphenylphosphino)ethyl]phenylphosphine; M = Pd (2), Pt (3)] and [Pt(NP3)Cl]Cl (5) (NP3 = tris[2-(diphenylphosphino)ethyl]amine), coexisting in the later case with a square-pyramidal arrangement, react with one equivalent of CuCl to give the mononuclear heteroionic systems [M(L)Cl](CuCl2) [L = PNHP, M = Pd (1a); L = P3, M = Pd (2a), Pt (3a); L = NP3, M = Pt (5a)]. The crystal structure of 3a confirms that Pt(II) retains the distorted square-planar geometry of 3 in the cation with P3 acting as tridentate chelating ligand, the central P atom being trans to one chloride. The counter anion is a nearly linear dichlorocuprate(I) ion. However, the five-coordinate complexes [Pd(NP3)Cl]Cl (4), [M(PP3)Cl]Cl (M = Pd (6), Pt (7); PP3 = tris[2-(diphenylphosphino)ethyl] phosphine) containing three fused five-membered chelate rings undergo a ring-opening by interaction with one (4, 6, 7) and two (6, 7) equivalents of CuCl with formation of neutral MCu(L)Cl3 [L = NP3, M = Pd (4a); L = PP3, M = Pd (6a), Pt (7a)] and ionic [MCu(PP3)Cl2](CuCl2) [M = Pd (6b), Pt (7b)] compounds, respectively. The heteronuclear systems were shown by 31P NMR to have structures where the phosphines are acting as tridentate chelating ligands to M(II) and monodentate bridging to Cu(I). Further additions of CuCl to the neutral species 6a and 7a in a 1:1 ratio resulted in the achievement of the ionic complexes 6b and 7b with ions as counter anions. It was demonstrated that the formation of heterobimetallic or just mononuclear mixed salt complexes was clearly influenced by the polyphosphine arrangement with the tripodal ligands giving the former compounds. However, complexes [M(NP3)Cl]Cl constitute one exception and the type of reaction undergone versus CuCl is a function of the d8 metal centre.  相似文献   

2.
The preparation of a series of 1,2-phenylenedioxoborylcyclopentadienyl-metal complexes is described. These are of formula [M{η5-C5H4(BX)}Cl3] [M = Ti and X = CAT (2a), CATt (2b) or CATtt (2c); X = CATtt and M = Zr (4a) or Hf (4b)], [M{η5-C5H4(BX)}2Cl2] [M = Zr, X = CAT (3a) or CATt (3c); or M = Hf, X = CAT (3b) or CATt (3d)], [M{(μ-η5-C5H3BCAT)2 SiMe2}Cl2] [M = Zr (5a) or Hf (5b)], [M{η5-C5H3(BCAT)2}Cl3] [M = Zr (6a) or Hf (6b)], [M{η5-C5H4BCAT}3(THF)] [M = La (7a), Ce (7b) or Yb (7c)], [Sn{η5-C5 H4(BCATt)}Cl](8) and [Fe{η5-C5H4(BCATt)}2] (9). The abbreviations refer to BO2C6H4-1,2 (BCAT) and the 4-But (BCATt) and the (BCATtt) analogues. The compounds 2a-9 have been characterised by microanalysis, multinuclear NMR and mass spectra. The single crystal X-ray structure of the lanthanum compound 7a is presented.  相似文献   

3.
[Rh(CO)2Cl]2 reacts with two mole equivalent of 2-acetylpyridine (a), 3-acetylpyridine (b) and 4-acetylpyridine (c) to afford chelate [Rh(CO)Cl(η2-N∩O)] (1a) and non-chelate [Rh(CO)2Cl(η1-N∼O)] (1b, 1c) complexes, where, N∩O = a, N∼O = b, c. Oxidative addition (OA) of 1a-1c with CH3I and C2H5I yields penta coordinate rhodium(III) complexes, [Rh(COR)ClI(η2-N∩O)] {R = -CH3 (2a); -C2H5 (3a)} and [Rh(COR)(CO)ClI(η1-N∼O)] {R = -CH3 (2b, 2c); -C2H5 (3b, 3c)}. Kinetic study for the reaction of 1a-1c with CH3I indicates a pseudo-first order reaction. The catalytic activity of 1a-1c for the carbonylation of methanol to acetic acid and its ester was evaluated at different initial CO pressures 5, 10 and 20 bar at ∼25 °C and higher turn over numbers (TON = 1581-1654) were obtained compared to commercial Monsanto’s species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature = 130 ± 1 °C, pressure = 15-32 bar, rpm = 450, time = 1 h and catalyst: substrate = 1: 1900.  相似文献   

4.
The synthesis, characterization, and application in asymmetric catalytic cyclopropanation of Rh(III) and Ir(III) complexes containing (Sa,RC,RC)-O,O′-[1,1′-binaphthyl-2,2′-diyl]-N,N′-bis[1-phenyl-ethyl]phosphoramidite (1) are reported. The X-ray structures of the half-sandwich complexes [MCl2(C5Me5)(1P)] (M = Rh, 2a; M = Ir, 2b) show that the metal-phosphoramidite bond is significantly shorter in the Ir(III) analog. Chloride abstraction from 2a (with CF3SO3SiMe3 or with CF3SO3Me) and from 2b (with AgSbF6) gives the cationic species [MCl(C5Me5)(1,2-η-1P)]+ (M = Rh, 3a; M = Ir, 3b), which display a secondary interaction between the metal and a dangling phenethyl group (NCH(CH3)Ph) of the phosphoramidite ligand, as indicated by NMR spectroscopic studies. Complexes 3a and 3b slowly decompose in solution. In the case of 3b, the binuclear species [Ir2Cl3(C5Me5)2]+ is slowly formed, as indicated by an X-ray study. Preliminary catalytic tests showed that 3a cyclopropanates styrene with moderate yield (35%) and diastereoselectivity (70:30 trans:cis ratio) and with 32% ee (for the trans isomer).  相似文献   

5.
The ligands bis-(imidazolium) hexafluorophosphate (Himy = -C3N2H3-, imidazolium; R = 1-naphthylmethylene, 1a; 9-anthracenylmethylene, 1b) with an oxoether chain were easily prepared by the reaction of substituted imidazole with the diglycol diiodide, followed by exchange of anions with . 1a and 1b reacted with Ag2O in DMSO or CH3CN to yield [2 + 2] dinuclear Ag(I) NHCs macrocyclic complexes 2a and 2b, which showed much different conformation in solid corresponding to the R- substituent. Carbene transmetalation reactions of 2a-b with Au(SMe2)Cl give dinuclear Au(I) analogs 3a and 3b. The new NHCs complexes were characterized by elemental analyses, 1H NMR, 13C NMR and the structures of 2a-b and 3a were confirmed by X-ray diffraction determination.  相似文献   

6.
Reaction of [(p-cymene)RuCl2(PPh3)] (1) or [CpMCl2(PPh3)] (Cp = C5Me5) (3a: M = Rh; 4a: M = Ir) with 1-alkynes and PPh3 were carried out in the presence of KPF6, generating the corresponding alkenyl-phosphonio complexes, [(p-cymene)RuCl(PPh3){CHCR(PPh3)}](PF6) (2a: R = Ph; 2b: R = p-tolyl) or [CpMCl(PPh3){CHCPh(PPh3)}](PF6) (5: M = Rh; 6: M = Ir). Similar reactions of complexes [CpRhCl2(L1)] (3a: L1 = PPh3; 3c: L1 = P(OMe)3) with L2 (L2 = PPh3, PMePh2, P(OMe)3) gave [CpRhCl(L1)(L2)](PF6) (7bb: L1 = L2 = PMePh2; 7ca: L1 = P(OMe)3, L2 = PPh3; 7cc: L1 = L2 = P(OMe)3). Alkenyl-phosphonio complex 5 was treated with P(OMe)3 or 2,6-xylyl isocyanide, affording [CpRhCl(L){CHCPh(PPh3)}](PF6) (8a: L = P(OMe)3; 8b: L = 2,6-xylNC). X-ray structural analyses of 2a, 6 and 8a revealed that the phosphonium moiety bonded to the Cβ atom of the alkenyl group are E configuration.  相似文献   

7.
Double deprotonation of 1,2-dibromo-4,5-difluorobenzene and 1-bromo-2-chloro-4,5-difluorobenzene by lithium diisopropylamide (LDA) in ethereal solutions is facile at very low temperatures (T < −90 °C). The organo-dilithium intermediates thus generated react readily with chlorophosphines ClPR2 (R = Ph and/or iPr), producing 1,2-dibromo-3,6-bis(diphenylphosphino)-4,5-difluorobenzene (1a), 1,2-dibromo-3,6-bis(diisopropylphosphino)-4,5-difluorobenzene (1b) and 1-bromo-2-chloro-3,6-bis(diphenylphosphino)-4,5-difluorobenzene (1c). Corresponding P-oxides 2a-c are obtained by oxidation of 1a-c with H2O2. Analogous reactions of 1,2-dibromo-4,5-difluorobenzene and 1-bromo-2-chloro-4,5-difluorobenzene with only 1 equiv. of LDA do not result in selective monodeprotonations, as 1a and 1c are formed preferentially after ClPPh2 quench. All of the isolated new compounds were fully characterized by multinuclear NMR spectroscopy, elemental analysis and/or mass-spectrometry. In addition, 1a, 1c, 2a, and 2b were characterized by single crystal X-ray diffraction methods.  相似文献   

8.
The reaction of trans(N)-[Co(d-pen)2] (pen = penicillaminate) with HgCl2 or HgBr2 in the molar ratios of 1:1 gave the sulfur-bridged heterodinuclear complex, [HgX(OH2){Co(d-pen)2}] (X = Cl (1a) or Br (1b)). A similar reaction in the ratio of 2:1 produced the trinuclear complex, [Hg{Co(d-pen)2}2] (1c). The enantiomers of 1a and 1c, [HgCl(OH2){Co(l-pen)2}] (1a′) and [Hg{Co(l-pen)2}2] (1c′), were also obtained by using trans(N)-[Co(l-pen)2] instead of trans(N)-[Co(d-pen)2]. Further, the reaction of cis · cis · cis-[Co(d-pen)(l-pen)] with HgCl2 in the molar ratio of 1:1 resulted in the formation of [HgCl(OH2){Co(d-pen)(l-pen)}] (2a). During the formations of the above six complexes, 1a, 1b, 1c, 1a′, 1c′, and 2a, the octahedral Co(III) units retain their configurations. On the other hand, the reaction of cis · cis · cis-[Co(d-pen)(l-pen)] with HgCl2 in the molar ratio of 2:1 gave not [Hg{Co(d-pen)(l-pen}2] but [Hg{Co(d-pen)2}{Co(l-pen)2}] (2c), accompanied by the ligand-exchange on the terminal Co(III) units. The X-ray crystal structural analyses show that the central Hg(II) atom in 1c takes a considerably distorted tetrahedral geometry, whereas that in 2c is of an ideal tetrahedron. The interconversion between the complexes is also examined. The electronic absorption, CD, and NMR spectral behavior of the complexes is discussed in relation to the crystal structures of 1c and 2c.  相似文献   

9.
Consecutive synthesis methodologies for the preparation of a series of copper(I) formates [LmCuO2CH] (L = nBu3P: 4a, m = 1; 4b, m = 2; 5, L = [Ti](CCSiMe3)2, m = 1, [Ti] = (η5-C5H4SiMe3)2Ti) and [LmCuO2CH·HO2CR] (L = nBu3P: 7a, m = 1, R = H; 7b, m = 2, R = H; 7c, m = 2, R = Me; 7d, m = 2, R = CF3; 7e, m = 2, R = Ph. L = (cC6H11)3P, R = H: 8a, m = 2; 8b, m = 3. L = (CF3CH2O)3P, R = H: 9a, m = 2; 9b, m = 3. L = (CH3CH2O)3P, R = H: 10a, m = 2; 10b, m = 3. L = [Ti](CCSiMe3)2; m = 1: 11a, R = H; 11b, R = Ph) is reported using [CuO2CH] (1) and L (2a, L = nBu3P; 2b, L (cC6H11)3P; 2c, L = (CF3CH2O)3P; 2d, L = (CH3CH2O)3P; 3, L = [Ti](CCSiMe3)2) as key starting materials. Addition of formic acid (6a) or carboxylic acid HO2CR (6b, R = Me; 6c, R = CF3; 6d, R = Ph) to the afore itemized copper(I) formates 4 and 5 gave metal-organic or organometallic 7-11. The molecular structures of 8a and 11a in the solid state are reported showing a threefold coordinated copper(I) ion, setup by either two coordinatively-bonded phosphorus atoms and one formate oxygen atom (8a) or two π-bonded alkyne ligands and one oxygen atom (11a). A formic acid molecule is additionally hydrogen-bonded to the CuO2CH moiety. The use of 7b as suitable precursor for the deposition of copper onto TiN-coated oxidized silicon wafers by the spin-coating process below 300 °C is described. Complex 7b offers an appropriate transformation behavior into metal phase by an elimination-decarboxylation mechanism. The morphology of the copper films strongly depends on the annealing conditions. A closed grain network densified by a post-treatment is obtained (8 °C min−1, N2/H2 carrier gas). Hydrogen post-anneal to 420 °C after film deposition gave a copper film showing resistivities from 2.5 to 3.7 μΩ cm. This precursor was also used for gap-filling processes.  相似文献   

10.
Two isomeric dibenzo-O2S2 macrocycles L1 and L2 have been synthesised and their coordination chemistry towards palladium(II) has been investigated. Two-step approaches via reactions of 1:1-type complexes, [cis-Cl2LPd] (1a: L = L1, 1b: L = L2), with different O2S2 macrocycle systems (L1 and L2) have led to the isolation of the following bis(O2S2 macrocycle) palladium(II) complexes in the solid state: [Pd(L1)2](ClO4)2 (2a) and a mixture of [Pd(L1)2](ClO4)2 (2a) + [Pd(L2)2](ClO4)2 (2b).  相似文献   

11.
Complexes of the type (η4-BuC5H5)Fe(CO)2(P) (P = PPh2Py 3, PPhPy24, PPy35; Py = 2-pyridyl) were satisfactorily prepared. Upon treatment of 3 with M(CO)3(EtCN)3 (M = Mo, 6a; W, 6b), the pyridyl N-atom could be coordinated to the metal M, which then eliminates a CO ligand from the Fe-centre and induced an oxidative addition of the endo-C-H of (η4-BuC5H5). This results in a bridged hydrido heterodimetallic complex [(η5-BuC5H4)Fe(CO)(μ-P,N-PPh2Py)(μ-H)M(CO)4] (M = Mo, 7a, 81%; W, 7b, 76%). The reaction of 4 or 5 with 6a,b did not give the induced oxidative addition, although these complexes contain more than one pyridyl N-atom. The reaction of 4 with M(CO)4(EtCN)2 (M = Mo, 9a; W, 9b) produced heterodimetallic complexes [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′-PPhPy2)M(CO)4] (M = Mo, 10a, 81%; W, 10b, 83%). Treatment of 5 with 6a,b gave [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′,N″-PPy3)M(CO)3] (M = Mo, 12a, 96%; W, 12b, 78%).  相似文献   

12.
The DNA cleavage activity of several β-diketonate vanadyl complexes is examined. Vanadyl acetylacetonate, VIVO(acac)2, 1, shows a remarkable activity in degrading plasmid DNA in the absence of any activating agents, air and photoirradiation. The cleaving activity of several related complexes VIVO(hd)2 (2, Hhd = 3,5-heptanedione), VIVO(acac-NH2)2 (3, Hacac-NH2 = acetoacetamide) and VIVO(acac-NMe2)2 (4, Hacac-NMe2 = N,N-dimethylacetoacetamide) is also evaluated. It is shown that 2 exhibits an activity similar to 1, while 3 and 4 are much less efficient cleaving agents. The different activity of the complexes is related to their stability towards hydrolysis in aqueous solution, which follows the order 12 ? 34. The nature of the pH buffer was also found to be determinant in the nuclease activity of 1 and 2. In a phosphate buffered medium DNA cleavage by these agents is much more efficient than in tris, hepes, mes or mops buffers. The reaction seems to take place through a mixed mechanism, involving the formation of reactive oxygen species (ROS), namely OH radicals, and possibly also direct cleavage at phosphodiester linkages induced by the vanadium complexes.  相似文献   

13.
1-Methylisocytosine (1-MeIC) can be protonated at the endocyclic N(3) position (pKa of 1-MeICH+, 4.02 ± 0.04) or complexed at this position with (dien)MII (M = Pt, Pd). X-ray crystal structures of the protonated species 1 as well as the Pd (2) and Pt (3) complexes are reported, and gas phase structures of the cation 2 and 3 have been calculated by ab initio methods. These results are compared with results from X-ray crystallography. At high pH, the Pt complex 3 undergoes deamination of the exocyclic N(2)H2 group to the 1-methyluracilate complex. As compared to the situation with 1-methylcytosine (1-MeC), the accelerating effect of (dien)PtII is much less pronounced, however.  相似文献   

14.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

15.
4-aryl-2-amino-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitrile (1), 4-aryl-2-oxo-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitriles (2a-2c), 3-(6-aryl-1,2,5,6- tetrahydro-2-thioxopyrimidin-4-yl)-4-hydroxy-2H-chromen-2-one (3a, 3b) and pyrazol-3-yl-4-hydroxycoumarin derivatives (4a-4c, 5, 6a, 6b, 7a, 7b, and 8a-8c) were prepared in order to measure their % change dopamine release in comparison to amphetamine as reference, using PC-12 cells in different concentrations. In addition, the molecular modeling study of the compounds into 3BHH receptor was also demonstrated. The calculated inhibition constant (ki) implemented in the AutoDock program revealed identical correlation with the experimental results to that obtained binding free energy (ΔGb) as both parameters revealed reasonable correlation coefficients (R2) being 0.51 involving 10 compounds; (1, 2b, 2c, 3a, 3b, 4a, 4b, 6a, and 8c).  相似文献   

16.
The synthesis and characterization of several complexes of the composition [{M(terpy)}n(L)](ClO4)m (M = Pt, Pd; L = 1-methylimidazole, 1-methyltetrazole, 1-methyltetrazolate; terpy = 2,2′:6′,2″-terpyridine; n = 1, 2; m = 1, 2, 3) is reported and their applicability in terms of a metal-mediated base pair investigated. Reaction of [M(terpy)(H2O)]2+ with 1-methylimidazole leads to [M(terpy)(1-methylimidazole)](ClO4)2 (1: M = Pt; 2: M = Pd). The analogous reaction of [Pt(terpy)(H2O)]2+ with 1-methyltetrazole leads to the organometallic compound [Pt(terpy)(1-methyltetrazolate)]ClO4 (3) in which the aromatic tetrazole proton has been substituted by the platinum moiety. For both platinum(II) and palladium(II), doubly metalated complexes [{M(terpy)}2(1-methyltetrazolate)](ClO4)3 (4: M = Pt; 5: M = Pd) can also be obtained depending on the reaction conditions. In the latter two compounds, the [M(terpy)]2+ moieties are coordinated via C5 and N4. X-ray crystal structures of 1, 2, and 3 are reported. In addition, DFT calculations have been carried out to determine the energy difference between fully planar [Pd(mterpy)(L)]2+ complexes Ip-IVp (mterpy = 4′-methyl-2,2′:6′,2″-terpyridine; L = 1-methylimidazole-N3 (I), 1-methyl-1,2,4-triazole-N4 (II), 1-methyltetrazole-N3 (III), or 3-methylpyridine-N1 (IV)) and the respective geometry-optimized structures Io-IVo. Whereas this energy difference is larger than 70 kJ mol−1 for compounds I, II, and IV, it amounts to only 0.8 kJ mol−1 for the tetrazole-containing complex III, which is stabilized by two intramolecular C-H?N hydrogen bonds. Of all complexes under investigation, only the terpyridine-metal ion-tetrazole system with N3-coordinated tetrazole appears to be suited for an application in terms of a metal-mediated base pair in a metal-modified oligonucleotide.  相似文献   

17.
The reactions of six diimine ligands with Cu(II) and Ni(II) halide salts have been investigated. The diimine ligands were Ph2CN(CH2)nNCPh2 (n = 2 (Bz2en, 1a), 3 (Bz2pn, 1b), 4 (Bz2bn, 1c)), N,N′-bis-(2-tert-butylthio-1-ylmethylenebenzene)-2,2′diamino-biphenyl (2), N,N′-bis-(2-chloro-1-ylmethylenebenzene)-1,3-diaminobenzene (3) and N,N′-bis-(2-chloro-1-ylmethylenebenzene)-1,2-ethanediamine (4). Reactions of 1a-c, 2-4 with CuCl2·2H2O in dry ethanol at ambient temperature led to complete or partial hydrolysis of the diimine ligands to ultimately form copper diamine complexes. The non-hydrolyzed complexes of 1b and 1c, [Cu(L)Cl2] (L = 1b, 1c), could be isolated when the reactions were carried out at low temperatures, and the half-hydrolyzed complex [Cu(Bzpn)Cl2] could also be identified via X-ray crystallography. Similarly, reactions of 1a or 1b with NiCl2·6H2O or [NiBr2(dme)] led to rapid hydrolysis of the imines and Ni complexes containing half-hydrolyzed 1a (Bzen; [trans-[Ni(Bzen)2Br2]) and 1b (Bzpn; [Ni(Bzpn)Br2] could be isolated and identified via single crystal X-ray analysis. Kinetic studies were made of the hydrolyses of 1a, 1b in THF and 2 in acetone, in the presence of Cu(II), and of 1a in acetonitrile, in the presence of Ni(II). Activation parameters were determined for the latter reaction and for the copper-catalyzed hydrolysis of 2; the relatively large negative activation entropies clearly indicate rate-determining steps of an associative nature.  相似文献   

18.
The silver(I) salts [AgOR] (3a, R = C9H6N; 3b, R = C6H4-2-CHO, 3c, R = C6H4-2-Cl; 3d, R = C6H4-2-CN; 3e, R = C6H4-2-NO2) are accessible by the stoichiometric reaction of [AgNO3] (1) with HOR (2a, R = C9H6N; 2b, R = C6H4-2-CHO; 2c, R = C6H4-2-Cl; 2d, R = C6H4-2-CN; 2e, R = C6H4-2-NO2) in presence of NEt3. Treatment of 3a-3e with PnBu3 (4), P(OMe)3 (5a) or P(OCH2CF3)3 (5b) in the ratios of 1:1 and 1:2, respectively, produced complexes [LmAgOR] (L = PnBu3, = 1: 6a, R = C9H6N; 6b, R = C6H4-2-CHO; 6c, R = C6H4-2-Cl; 6d, R = C6H4-2-CN; 6e, R = C6H4-2-NO2. = 2: 7a, R = C9H4; 7b, R = C6H4-2-CHO; 7c, R = C6H4-2-Cl; 7d, R = C6H4-2-CN; 7e, R = C6H4-2-NO2. L = P(OMe)3, = 1: 8a, R = C6H4-2-CHO; 8b, R = C6H4-2-NO2. = 2: 9, R = C6H4-2-NO2. L = P(OCH2CF3)3, = 1: 10, R = C6H4-2-NO2). Based on TGA, temperature-programmed and in situ molecular beam mass spectrometry metal-organic 7e was applied as CVD precursor in the deposition of silver onto glass substrates. The resulting silver films were characterized by XRD. The SEM image of a film grown from 7e at 350 °C showed a homogeneous surface with grain sizes of 40 nm. The molecular structures of 8b and 10 in the solid state were determined. They are isostructural and are cubane-like structured. Low-temperature 31P{1H} NMR studies showed that the title complexes are dynamic in solution and exchange at room temperature their ligands.  相似文献   

19.
New t-butyl-aryl thioethers where the aryl group is 2,6-bis(phosphino)phenyl have been synthesized. The syntheses were completed via sequential ortho-lithiations of t-butylphenylsulfide, followed by chlorophosphine (ClPR2) quenches; symmetric (2,6-bis(diphenylphosphino)phenyl, (4a)) and unsymmetric (2-diisopropylphosphino-6-diphenylphosphino)phenyl, (4b) aryl groups were obtained. Treatment of 4a with Li or Na naphthalenide yielded 2,6-bis(diphenylphosphino)thiophenol 5. Reactions of 4a or 5 with NiCl2 · 6H2O yielded nickel bis(phosphinothiophenolate) 6. Compounds 4a,b, 5 and 6 were characterized by 1H and 31P NMR, and by mass-spectrometry. In addition, 4a, 5 and 6 were characterized by single crystal X-ray diffraction methods.  相似文献   

20.
Two redox-asymmetric amide-bridged bis(terpyridine)ruthenium(II) complexes (3a, 3b) have been prepared by amide coupling of a carboxylic acid functionalized complex with an amine substituted complex and they were fully characterized by spectroscopic analyses. They emit at 692 and 750 nm at room temperature in fluid solution with quantum yields larger than 10−3 and 3MLCT lifetimes of 22 ns. Ru···Ru distances were estimated from DFT models as 17.7 and 13.4 Å for 3a and 3b, respectively. Cyclic voltammetry gives two oxidation potentials for the differently substituted ruthenium sites with splittings of 0.10 and 0.23 V for 3a and 3b, respectively. Oxidation of 3b with CeIV ions gives the corresponding mixed-valent RuII-RuIII system which is valence-localized according to NIR spectroscopic and theoretical analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号