首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our efforts to investigate the factors that affect the formation of coordination architectures, such as secondary coordination donors and pendant skeletons of the carboxylic acid ligands, as well as H-bonding and other weak interactions, two kinds of ligands: (a) 3-(2-pyridyl)pyrazole (L1) with a non-coordinated N atom as a H-bonding donor, a 2,2′-bipyridyl-like chelating ligand, and (b) four carboxylic ligands with different secondary coordination donors and/or pendant skeletons, 1,4-benzenedicarboxylic acid (H2L2), 4-sulfobenzoic acid (H2L3), quinoline-4-carboxylic acid (HL4) and fumaric acid (H2L5), have been selected to react with Mn(II) salts, and five new complexes, [Mn(L1)2(SO4)]2 (1), [Mn(L1)2(L2)] (2), [Mn(L1)(HL3)2] (3), Mn(L1)2(L4)2 (4), and [Mn(L1)2(L5)] (5), have been obtained and structurally characterized. The structural differences of 1-5 can be attributed to the introduction of the different carboxylic acid ligands (H2L2, H2L3, HL4, and H2L5) with different secondary coordination donors and pendant skeletons, respectively. This result also reveals that the typical H-bonding (i.e. N-H?O and O-H?O) and some other intra- or inter-molecular weak interactions, such as C-H?O weak H-bonding and π?π interactions, often play important roles in the formation of supramolecular aggregates, especially in the aspect of linking the multi-nuclear discrete subunits or low-dimensional entities into high-dimensional supramolecular networks.  相似文献   

2.
A potentially heptadentate ligand H3L (N,N-bis(2-hydroxybenzyl)-1,3-bis[(2-aminoethyl)amino]-2-propanol) and its two Ni(II) complexes, [Ni(H2L)H2O](H2O)3ClO4 (1) and [Ni(H2L)(H2O)](H2O)Cl (2) were prepared and characterized. X-ray structural analyses indicate that complex 1 has a distorted octahedral coordination geometry, with four amine N atoms of H2L defining the equatorial plane, one aqua O atom and one phenoxo O atom of the ligand occupying two axial positions, respectively. The Ni(II) center of 2 has coordination geometry similar to that of 1. IR and electronic spectra of 1 and 2 are in agreement with their crystal structural features. Approximately along the ab plane, 2D supramolecular structure of 1 is assembled through multiple hydrogen bonds between hydroxy groups of the ligands, coordinated and crystal lattice H2O and π-π stacking interactions between adjacent phenyl rings of the ligands, while for that of 2, probably along the a axis, 1D chain structure is also formed by multiple hydrogen bonds, but lack of π-π stacking interactions.  相似文献   

3.
The electronic effects of the fluorine atoms in hfacac (hexafluoroacetylacetonato) compared with acac (acetylacetonato) in Cu(II) complexes are used to control the molecular and supramolecular structure of Cu(II) compounds. While bis(acac)Cu(II) (acac = acetylacetonato) is known to be able to have a fifth-position coordination, bis(hfacac)Cu(II), (hfacac = hexafluoroacetylacetonato) may have two extra ligands. This, together with the reliable “supramolecular reagent” isonicotinamide, as the additional ligand, are used to go from a zero-dimension structure, with Cu-acac, to an extended supramolecular two-dimension network, with Cu-hfacac. The molecular and crystal structure of bis(acetylacetonato-O,O′)-(isonicotinamide-N) copper(II), 1, and bis(hexafluoroacetylacetonato-O,O′)-trans-bis(isonicotinamide-N) copper(II), 2, are reported.  相似文献   

4.
Two new coordination polymers {[Mn(H2btc)(phen)(H2O)2]H2btc · H2O}n (1) [H3btc = 1,3,5-benzene tricarboxylic acid, phen = phenanthroline] and {[Zn3(btc)2(H2O)8](H2O)4}n (2) have been synthesised and structurally characterised. Both the complexes crystallise as 1D chain, which further propagates through ligand-based hydrogen bonding interactions into a 3D supramolecular architecture. Supramolecular framework of 1 is constructed by [Mn(H2btc)(phen)(H2O)2]+ as well as the constituent materials-uncoordinated H2btc and water molecules. Complex 2 exists as a corrugated chain with both the bridging and terminal Zn2+ ions and each zinc centre is coordinated to four water molecules. Both 1 and 2 are stacked by mutual π-stacking of the ligands and exhibit strong fluorescence emission band at 414 and 400 nm, respectively.  相似文献   

5.
A series of copper(II) complexes having the formula [Cu(n-R-pyp)X] with the N,N,O-donor Schiff base system 2-N-(picolinylidene)-n-R-phenol (n-R-Hpyp) (where n = 3, 4, 5 and 6, when R = Me and n = 4 when R = Cl) and halide (X = Cl or Br) as an ancillary ligand have been synthesized. The complexes are characterized by microanalytical, magnetic and various spectroscopic measurements. They display solvatochromic behavior. Single crystal X-ray structures of all the complexes are determined. In coordinatively unsaturated species such as a square-planar complex, the metal ion can interact with a fifth atom and if this atom is metal bound, dimeric or polymeric aggregate is formed. In the present series of complexes, the metal ions are square-planar and distorted square-pyramidal when there is an intermolecular Cu···X interaction. In addition to this Cu···X interaction, presence of intermolecular weak non-covalent interactions namely O-H···O, C-H···O, C-H···X and π···π are perceived. The supramolecular architectures formed by the molecules of these complexes via these interactions are scrutinized. The observed supramolecular structural motifs can be classified as staircase, ladder, brick-wall and square-grid. Except for R = Cl the analogous chloride and bromide coordinated complexes show similar structural features.  相似文献   

6.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

7.
Recently, a series of Fe(II) complexes have been published by our group with 3 N-donor 1,3-bis(2′-Ar-imino)isoindoline ligands containing various Ar-groups (pyridyl, 4-methylpyridyl, thiazolyl, benzimidazolyl and N-methylbenzimidazolyl). The superoxide scavenging activity of the compounds showed correlation with the Fe(III)/Fe(II) redox potentials. Analogous, electroneutral chelate complexes with Mn(II) and Ni(II) in 2:1 ligand:metal composition are reported here. Each Mn(II) complex exhibits one reversible redox wave that is assigned as the Mn(III)/Mn(II) redox transition. The E1/2 spans a 180 mV range from − 98 (Ar = 3-methylpyridyl) to 82 mV (Ar = thiazolyl) vs. the Fc+/Fc depending on the Ar-sidearm. The SOD-like (SOD=superoxide dismutase)activity of all complexes was determined according to the McCord-Fridovich method. The Mn(II) isoindolinates have IC50 values - determined with 50 μM cytochrome c Fe(III) - that range from (3.22 ± 0.39) × 10− 6 (Ar = benzimidazolyl) to (10.80 ± 0.54) × 10− 6 M (Ar = N-methylbenzimidazolyl). In contrast with the Fe(II) complexes, the IC50 concentrations show no significant dependence on the E1/2 values in this narrow potential range emphasizing that the redox potential is not the governing factor in the Mn(II)-containing scavengers. The analogous Ni(II) compounds show no redox transitions in the thermodynamically relevant potential range (− 0.40 to 0.65 V vs. SCE) and accordingly, their superoxide scavenging activity (if any) is below the detection level.  相似文献   

8.
Metal complexes of d-glucose (d-Glc) from large cation containing dibromo-dichloro salts of dipositive metals [NEt4]2[MBr2Cl2] (M = Mn, Co, Ni, Cu and Zn) and the disodium salt of glucose were synthesized from a MeOH:MeCN mixture. The complexes were characterized by UV-vis absorption, circular dichroism, IR and proton magnetic resonance spectroscopies, and by elemental analysis, and were found to be Na[M(d-Glc)(OMe)Cl]. Cyclic voltammetric studies of these complexes, in the acidic to neutral pH range, indicated no dissociation, even in highly acidic conditions.This paper is dedicated to Professor Richard H. Holm (Harvard University) on the occasion of his 60th birthday.  相似文献   

9.
A covalent-bonded one-dimensional (1D) chain, [Mn(bpe)2(SCN)2]n (1) [bpe=1,2-bis(4-pyridyl)ethane], and a hydrogen-bonded two-dimensional (2D) sheet, [Mn(tbp)2(H2O)2(SCN)2] (2) [tbp=trans-1,2-bis(4-pyridyl)ethylene], have been prepared. Complex 1 can be viewed as a purely coordinative-bonded 1D motif doubly bridged by the bpe ligand that is a gauche conformational isomer with a large dihedral angle of 73.9°. The two bridging bpe ligands feature a shape of square with a dimension of 10.064 Å × 9.776 Å. The compound 2 possesses non-covalent bonding forces of hydrogen bonds and π-π interactions responsible for the fabrication of the 2D architecture. Magnetic susceptibility data for 1 were fitted by employing the infinite chain model (H=−JSi·Si+1) to give parameters of J=−0.052 cm−1 and g=2.00, indicating the presence of a weak anti-ferromagnetic coupling.  相似文献   

10.
In our efforts to investigate the relationships between the structures of ligands and their complexes, two structurally related ligands, 1-(2-pyridylmethyl)-1H-benzimidazole (L1) and 1-(4-pyridylmethyl)-1H-benzimidazole (L2), and their four complexes, [Zn(L1)2Cl2] (1), [Hg(L1)Br2] (2), {[Zn(L2)Cl2](CH3CN)} (3) and [Hg(L2)Br2]2(CH3CN)2 (4) were synthesized and structurally characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction analysis. Structural analyses show that 1 has a mononuclear structure, and 2 and 3 both take 1D structure. While 4 takes a dinuclear structure. 1, 2 and 4 were further linked into higher-dimensional supramolecular networks by weak interactions, such as C-H?Cl and C-H?Br H-bonding, C-H?π, and π?π stacking interactions. The structural differences of 1-4 may be attributed to the difference of the spatial positions of the terminal N donor atoms in the pendant pyridyl groups in L1 and L2, in which the pyridine rings may act as the directing group for coordination and the benzimidazole rings act as the directing group for π?π stacking and C-H?π interactions. The luminescent properties of the corresponding complexes and ligands have been further investigated.  相似文献   

11.
Four hydrazone ligands: 2-benzoylpyridine benzoyl hydrazone (HBPB), di-2-pyridyl ketone nicotinoyl hydrazone (HDKN), quinoline-2-carbaldehyde benzoyl hydrazone (HQCB), and quinoline-2-carbaldehyde nicotinoyl hydrazone (HQCN) and four of their complexes with vanadyl salts have been synthesized and characterized. Single crystals of HBPB and complexes [VO(BPB)(μ2-O)]2 (1) and [VO(DKN)(μ2-O)]2·½H2O (2) were isolated and characterized by X-ray crystallography. Each of the complexes exhibits a binuclear structure where two vanadium(V) atoms are bridged by two oxygen atoms to form distorted octahedral structures within cis-N2O4 donor sets. In most complexes, the uninegative anions function as tridentate ligands, coordinating through the pyridyl- and azomethine-nitrogen atoms and enolic oxygen whereas in complex [VO(HQCN)(SO4)]SO4·4H2O (4) the ligand is coordinated in the keto form. Complexes [VO(QCB)(OMe)]·1.5H2O (3) and 4 are found to be EPR active and showed well-resolved axial anisotropy with two sets of eight line pattern.  相似文献   

12.
Reaction of the symmetrical proligand H2L with metal(II) acetate and a counteranion to promote crystallisation has given the homodinuclear complexes [Zn2L(OAc)2](BF4)]·2MeOH and [Ni2L(OAc)2](BF4)]·2MeOH the crystal structures of which are reported. These show the presence of a triply bridging (μ-cresolato)bis(μ-carboxylato) dimetal core.  相似文献   

13.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

14.
Four butane-1,2,3,4-tetracarboxylato bridged supramolecular complexes [Co2(H2O)5(BTC)]·2H2O 1, [Co2(H2O)5(BTC)]·2H2O 2, [Co2(H2O)6(bpy)2(BTC)]·4H2O 3 and [Co2(H2O)2(bpy)2(BTC)] 4, (H4BTC = butane-1,2,3,4-tetracarboxylic acid, 2,2-bpy = 2,2-bipydine) are synthesized and characterized by single-crystal X-ray diffraction. IR spectroscopy, TG-DTA analyses, elemental analyses, powder X-ray diffraction and magnetic measurements for 3 and 4 are carried out. The dinuclear Co unit in 2 is bridged by BTC4− anions into 2D layers, which are assembled via interlayer hydrogen bonds into a 3D (44·62)(45·65)2(46·68·8) topological supramolecular architecture. In 3, the [Co2(H2O)6(bpy)2(BTC)] molecules are aggregated to 2D layers via π-π stacking interactions, the resulting layers are engaged in hydrogen bonding leading to a novel 3D supramolecular architecture with the schläfli symbol of (102.12)2(4.102)2(42.102.122). The Co atoms in 4 are linked by BTC4− anions into a 1D chain, then the hydrogen bonding and π-π stacking interactions result in formation of a 3D novel (43.62.8)2(46.66.83)(63)2 topological networks. The variable temperature magnetic characterizations on 3 and 4 suggest weak antiferromagnetic or ferromagnetic coupling exchange via π···π stacking interactions (= -0.03 cm−1 for 3, = 0.11 cm−1 for 4).  相似文献   

15.
Four seven-coordinated manganese(II) complexes [Mn(tpa)(η1-NO3)(η2-NO3)] (1), [Mn(bpia)(η1-NO3)(η2-NO3)] (2), [Mn(tpa)(η1-NO3)(η2-NO3)] (3), [Mn(tpa)(η1-NO3)(η2-NO3)] (4), and one octacoordinated manganese(II) complex [Mn(bppza)(η2-NO3)2] (5) have been synthesized and characterized using the tripodal tetradentate ligands tpa, bpia, bipa, ipqa, and bppza (tpa: tris(2-pyridylmethyl)amine, bpia: bis(2-pyridylmethyl)(2-(N-methyl)imidazolylmethyl)amine, bipa: bis-(2-(N-methyl)imidazolylmethyl)(2-pyridylmethyl)amine, ipqa: (2-(N-methyl)imidazolylmethyl)(2-pyridylmethyl)(2-quinolylmethyl)amine, and bppza: bis(2-pyridylmethyl)(2-pyrazylmethyl)amine). The crystal structures for all compounds have been determined. 1, 2 and 3 crystallize in the triclinic space group , 4 crystallizes in the orthorhombic space group Pbca, whereas the eight-coordinated 5 crystallizes in the monoclinic space group P21/n. All compounds have one bidentate bound nitrate group in common. The coordination number and its geometry depend on the coordination mode of the second nitrate group. The coordination polyhedron for 1, 2, 3 and 4 is best described as an oblate octahedron and the one for 5 as a doubly oblate octahedron.  相似文献   

16.
Pt(II) and Pd(II) compounds containing the free radical 4-aminoTEMPO (4amTEMPO) were synthesized and characterised by X-ray diffraction methods. The disubstituted complexes cis- and trans-Pt(4amTEMPO)2I2 were studied. The trans isomer was prepared from the isomerisation of the cis analogue. The two Pd(II) compounds trans-Pd(4amTEMPO)2X2 (X = Cl and I) were also characterised by crystallographic methods. A mixed-ligand complex cis-Pt(DMSO)(4amTEMPO)Cl2 was synthesized from the isomerisation of the trans isomer in hot water. Its crystal structure was also determined. In all the complexes, the 4amTEMPO ligand is bonded to the metal through the -NH2 group, since the nitroxide O atom is not a good donor atom for the soft Pt(II) and Pd(II) metals. The conformation of the 4-aminoTEMPO ligand was compared to those of the few reported structures in the literature.  相似文献   

17.
Four copper(II) complexes containing the reduced Schiff base ligands, namely, N-(2-hydroxybenzyl)-glycinamide (Hsglym) and N-(2-hydroxybenzyl)-l-alaninamide (Hsalam) have been synthesized and characterized. The crystal structures of [Cu2(sglym)2Cl2] (1), [Cu2(salam)2(NO3)2] · H2O (3), [Cu2(salam)2(NO3)(H2O)](NO3) · 1.5H2O (4), [Cu2(salam)2](ClO4)2 · 2H2O (5) show that the Cu(II) atoms are bridged by two phenolato oxygen atoms in the dimers. The sglym ligand bonded to Cu(II) in facial manner while salam ligand prefers to bind to Cu(II) in meridonal geometry. Variable temperature magnetic studies of 3 showed it is antiferromagnetic. These Cu(II) complexes and [Cu2(sglym)2(NO3)2] (2), exhibit very small catecholase activity as compared to the corresponding complexes containing acid functional groups.  相似文献   

18.
The synthesis and crystal structures of two dinuclear nickel(II) complexes of unsymmetric compartmental ligands derived from phenol and bearing a terdentate linear arm and a terdentate dipodal arm are reported. The binding of the terminal donor atom of the terdentate linear arm appears to be dependent on the nature of the accompanying counter-anion. In the presence of the non-coordinating tetrafluoroborate anion a terminal alcohol is coordinated, whereas in the presence of added isothiocyanate ion a terminal amine is not coordinated but the anion is.  相似文献   

19.
The ligands 3,3′-dimethylene-2,2′-bibenzo[g]quinoline and bisbenzo[2,3:9,8]-1,10-phenanthroline have been coordinated with Ru(II) to form both tris- and mixed ligand complexes. These species are highly congested about the metal center but can be formed through the use of microwave irradiation. Shielding and deshielding effects on the chemical shifts of the aryl as well as the bridge protons reveal important conformational effects. Bathochromic shifts are observed in the electronic absorption spectra, associated with increased delocalization of the ligand and lowering of the π*-energy level. Similar effects are observed for the reduction potentials while the oxidation potentials are much less sensitive to ligand structure.  相似文献   

20.
Two new Mn(II) coordination polymers with bis(5-tetrazolyl)methane (H2btm), [Mn(btm)(phen)(H2O)] · H2O (1) and [Mn(btm)(2,2′-bpy)] · 1.5H2O (2), have been synthesized and their structures determined by X-ray diffraction. In complex 1, the btm ligands assume the μ2-1,1′:4 coordination mode and interlink Mn(II) ions into infinite one-dimensional chains. The chains are assembled into a three-dimensional architecture via hydrogen bonds and π-π interactions. For 2, Mn(II) ions are connected by btm ligands in the μ3-1,1′:2:3′ mode to produce two-dimensional (6,3) coordination network. Magnetic investigations revealed that interactions through the btm bridges in both 1 and 2 are antiferromagnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号