首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new organic-inorganic hybrid materials with 4,4′-bipy ligands and copper cations as linkers, [CuII(H2O)(4,4′-bipy)2][CuII(H2O)(4,4′-bpy)2]2H[CuIIP8Mo12O62H12] · 5H2O (1), [CuI(4,4′-bipy)][CuII(4,4′-bipy)]2 (BW12O40) · (4,4′-bipy) · 2H2O (2) and [CuI (4,4′-bipy)]3 (PMo12O40) · (pip) · 2H2O (3) (pip = piperazine; 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. The single X-ray structural analysis reveals that the structure of 1 is constructed from [Cu(H2O)(4,4′-bipy)2] complexes into a novel, three-dimensional supermolecular network with 1-D channels in which Cu[P4Mo6]2 dimer clusters reside. To the best of our knowledge, compound 1 is the first complex in which the [P4Mo6] clusters have been used as a non-coordinating anionic template for the construction of a novel, three-dimensional supermolecular network. Compound 2 is constructed from the six-supported [BW12O40]5− polyoxoanions and [CuI(4,4′-bipy)] and [CuII(4,4′-bipy)] groups into a novel, 3-D network. Compound 3 exhibits unusual 3-D supramolecular frameworks, which are constructed from tetrasupporting [PMo12O40]3− clusters and [CuI (4,4′-bipy)n] coordination polymer chains. The electrochemical properties of 2 and 3 have been investigated in detail.  相似文献   

2.
Three new copper complexes, [CuIICuI(ip)(ipH)(4,4′-bipy)3/2]n (1), [Cu(ip)(4,4′-bipy)]n · 3nH2O (2), and [Cu(ipH)2(4,4′-bipy)]n (3), have been hydrothermally synthesized by the reaction of Cu(NO3)2 · 3H2O with isophthalic acid (ipH2) and 4,4′-bipyridine (4,4′-bipy) under different reaction conditions. Complex 1, a mixed-valence copper(I,II) complex, exhibits a 2-D interpenetrating grid framework, in which five-coordinated CuII and three-coordinated CuI environments are established. The oxidation states of center Cu atoms have been confirmed by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectra (EPR). Complex 2 features a 2-D box-like bilayer architecture, in which CuII atoms are linked by ip ligands to form a 1-D double-chain and the resulting chains are further strutted by the 4,4′-bipy ligands. In complex 3, two bridging 4,4′-bipy ligands and two terminal ipH ligands confine the CuII center in a square plane coordination geometry. The whole molecule of 3 was arranged into a 1-D linear chain structure. Additionally, the thermogravimetric analyses (TGA) for complexes 1-3 are also discussed in this paper.  相似文献   

3.
Four copper(I) complexes of 2,11-dithia[3.3]paracyclophane (dtpcp), [CuI(dtpcp)] · MeCN (1), [CuBr(dtpcp)] · MeCN (2), [CuCl(dtpcp)] · MeCN (3) and [Cu2I2(dtpcp)2] · Me-thf (4) (Me-thf=2-methyltetrahydrofuran), have been synthesized and their molecular structures determined by X-ray crystallography. Complexes 1 and 2 are isostructural, and exhibit 3D networks with elliptical channels along a-axis, which are constructed by dtpcp molecules bridging zigzag CuI and CuBr chains, respectively. Complexes 3 and 4 are 2D porous sheet networks constructed by bridging the zigzag copper-dtpcp chains via rhombic ring of Cu2X2 (X=Cl or I). All sheets in 3 are packed in an eclipsed manner through π-π stackings to generate channels along the a-axis. However, the 2D porous sheets in 4 are packed in an offset mode such that channels are not formed along c-axis. Complexes 1 and 2 can reversibly incorporate guest acetonitriles without collapse of structures, and the original frameworks of 1 and 2 are completely recovered after incorporation of guests which are confirmed by X-ray powder diffraction (XRPD) pattern and 1H NMR spectrum. Additionally, complex 1 exhibits selectivity in size and polarity for guest inclusion.  相似文献   

4.
Six new coordination polymers based on V-shaped linkage 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (bpt) and transition metal ions, [Co(bpt)(pm)0.5(H2O)]n · 3nH2O (1), [Cu2(bpt)(pm)(H2O)4]n (2), [Co(bpt)(pydc)]n · 2nCHCl3 · nH2O (3), [Cu2(bpt)(pydc)2(H2O)2]n (4), [Cu2(bpt)(pydco)2(H2O)2]n · nH2O (5) and [Cd(bpt)(pydco)]n (6) (H4pm = pyromellitic acid, H2pydc = pyridine-2,6-dicarboxylic acid, H2pydco = pyridine-2,6-dicarboxylic acid N-oxide), have been synthesized under the intervention of various polycarboxylate ligands. Complex 1 exhibits a 3-D 4-connected structure with 1-D nanosized open channels encapsulated lots of water molecules. Complex 2 represents a 2-D grid containing two types of rectangular windows. When pydc and pydco instead of pm, complexes 3 and 6 were obtained with highly undulated 2-D layers. The interlayers of 3 are filled with two kinds of solvent molecules, whereas 6 is a double-layered framework without free molecules. Complexes 4 and 5 consist of two distinct 1-D infinite chains held together to form different 2-D supramolecular networks. Importantly, bpt spacer shows changeful conformational geometries and generates complicated crystalline architectures with the introduction of polycarboxylate ligands. Additionally, thermal stability of complexes 1, 3 and 5, fluorescent properties of 6 and X-ray powder diffraction of 1 have also been investigated.  相似文献   

5.
Three new coordination polymers based on IB metal thiocyanates, [CuII(NCS)2(DMSO)4(meso-dpb)]n (1), (2), [CuI(NCS)(pia)]n (3) (dpb = 2,3-di(4-pyridyl)-2,3-butanediol, bpp = 1,3-bis(4-pyridyl)propane, pia = N,N′-(1,2-phenylene)diisonicotinamide), have been synthesized by the pre-assembly method and characterized by X-ray crystallography. In 1, CuII cations are bridged by meso-dpb ligands to form a one-dimensional (1D) linear chain. Compound 2 consists of 2D undulated layers of (4, 4) topology that show twofold parallel interpenetration. In the case of 3, the MI center adopts tetrahedral coordination geometry and the 2D networks are formed by organic ligand with “folding ruler-shaped” NCS-M chains. The thermal properties of 1-3 were also investigated.  相似文献   

6.
Five cadmium halides with N-donor ligands were synthesized under the hydrothermal conditions and characterized by X-ray single-crystal diffraction. The isostructural [CdX2(2,2′-bpy)] (X = I 1, Br 2, bpy = bipyridine) (1) possess 3-D supramolecular network structures based on 1-D zigzag-type CdX2 chains extended by bpy molecules via non-covalent C-H?X hydrogen-bonded interactions. The 3-D porous [CdBr2(pip)] (pip = piperazine) (3) is formed through a linkage of 1-D zigzag-type CdBr2 chains by pip bridges. The heteronuclear dimetal-iodo cluster [Cu(phen)2CdI4] (phen = phenanthroline) (4) consists of a trigonal bipyramidal Cu(II) center and a tetrahedral Cd(II) center linked by a μ2-I bridge. The ionic [Co(dien)2][CdI4] (dien = diethylenetriamine) (5) comprises an octahedral cation and a tetrahedral anion.  相似文献   

7.
Reaction of CuII, K3 [Fe(CN)6] and bidentate diimine ligands by hydrothermal synthesis under different conditions affords one novel heteronuclear FeII-CuI complex, (bipy = 2,2′-bipyridine), and two homonuclear CuI complexes, [CuI(μ-CN)(bipy)]n (2) and (3) (phen = 1,10-phenanthroline). Although all the three complexes are 1D cyanide bridged helical chains, they have different helicoids of pseudo-square, pseudo-trigonal and head-to-head bistrigonal for 1, 2 and 3, respectively. The structure of 1 is extended to 2D hexagonal meshed layers by the hydrogen bonding between terminal cyanides and lattice water molecules, which also contain π-π interactions between adjacent sheets. CuI ions in 1 are distorted trigonal planar coordinated by two bridging cyanides and one terminal cyanide, whereas that in 2 and 3 are pseudo-tetrahedral coordinated by two bridging cyanides and two N atoms of a diimine. Both the latter homometallic polymers exhibit similar chain structure, and these chains are close packed with their six adjacent chains in a parallel fashion along the c-axis to form a honeycomb network. It should be noted that complex 1 is the first cyanide bridged FeII-CuI complex of helical chain structure. The spectroscopic properties of complexes 1-3 have also been investigated.  相似文献   

8.
To further investigate the solvent effect on the structures of coordination polymers, a series of polymeric CuII complexes have been synthesized and characterized by single-crystal diffraction through combining of 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid (H2BDC-Cl4) with CuII perchlorate. The products including {[Cu(BDC-Cl4)(py)3] · H2O}n (py = pyridine) (1), {[Cu(BDC-Cl4)(dioxane)(H2O)2] · dioxane}n (2), and {[Cu2(BDC-Cl4)2(DMF)4] · 2G}n (G = MeOH in 3 and G = EtOH in 4) have been obtained in different mixed solvents systems. With the change of the solvent system from pyridine/H2O (1:1) into dioxane/H2O (1:1), the infinite 1-D CuII-BDC-Cl4 chain motif in 1 is tuned into the 2-D (4,4) layered structure in 2 with the coordination of dioxanes to copper atoms. When the solvent system is changed into DMF/MeOH (1:1), then into DMF/EtOH (1:1), similar 1-D CuII-BDC-Cl4 double chains are afforded in 3 and 4 with different solvents inclusion. Moreover, the judicious choice of binding-guests leads to numerous coordination geometries of CuII centers and final dissimilar supramolecular lattices of 1-4 from 1-D to 3-D via robust hydrogen-bonding interactions. The spectroscopic, thermal, and fluorescent properties of 1-4 have also been investigated.  相似文献   

9.
A new perylene-pendent tridentate ligand, N-(3-perylenylmethyl)-N,N-bis(2-pyridylmethyl)amine (perbpa) 1 and its Cu(II) complex, [Cu(perbpa)Cl2] (2) were prepared and structurally characterized by the X-ray diffraction method. In the packing structure of ligand 1, perylene groups were aggregated to form a π-π stacked layer of dimerized pelylene moieties similar to the packing of pristine perylene. This result suggests both that the π-π interactions among the perylene moieties predominate for the arrangement of perbpa molecules in the crystal and that this ligand is a good candidate for constructing electron conducting path. A complex 2 was prepared from the ligand 1 and a copper(II) chloride dehydrate. Complex 2 had a mononuclear and 5-coordinate distorted square pyramidal structure with a perbpa and two coordinated chloride ions. The chemical oxidation of 2 by iodine resulted in the unprecedented binuclear Cu(II) species, [Cu2(μ-Cl)2(perbpa)2](I3)2, 3·(I3)2. An X-ray crystal structure analysis of 3·(I3)2 revealed the binuclear structure bridged by the chloride ions. A temperature dependent magnetic susceptibility measurement of 3 showed a weak ferromagnetic exchange interaction with S = 1 ground state, g = 2.12 and J = +1.17 cm−1, based on H = −2JS1 · S2. The UV-Vis absorption and the EPR spectra of 3 showed that the perylene groups are not oxidized. These results indicate a couple of Cu(II) constructed S = 1 ground state with intermolecular ferromagnetic interaction. The electrochemical study suggested that the crystallization of 3·(I3)2 was initiated by the oxidation of the N,N-bis-(2-pyridylmethyl)amino (bpa) groups of 2 by I2.  相似文献   

10.
Two unprecedented families of bpca-based mono-dimensional complexes Cu(bpca)(X) (X = CN, 1; N3, 2) and [Cu1 − xFex(bpca)](ClO4) (x = 0, 3; 0.23, 4) were synthesised. The structure of 1 was solved ab initio from X-ray powder diffraction data and refined by Rietveld methods. The complexes 3-4 were characterised by X-ray single crystal diffraction. In 1 the cyano ligand coordinates the metal centres, the Cu centres forming a zigzag 1-D chain along the (0 0 1) direction, while in 3-4, the bpca ligand itself acts as the link towards the metal ions which are arranged in a linear 1-D chain running parallel to the (0 0 1) direction. An infrared spectroscopy study confirmed these coordination modes. The magnetic properties of both chain families were studied. 1-2 do not show significant magnetic interactions, whereas the magnetic behaviour for 3-4 suggests dominant antiferromagnetic interactions between the metal ions within the chains. The magnetic behaviour of 3 was analysed using the Padé approximation of the Bonner-Fisher model for S = 1/2 antiferromagnetic chains. The J value was estimated as 10 K.  相似文献   

11.
Hydrothermal synthesis has afforded a series of divalent copper coordination polymers with substituted glutarate ligands and the rigid rod tether 4,4′-bipyridine (bpy): {[Cu(Hdmg)2(bpy)]·H2O}n (1, dmg = 3,3-dimethylglutarate), {[Cu2(dmg)(bpy)2](ClO4)]n (2), [Cu2(emg)2(bpy)]n (3, emg = 3-ethyl, 3-methylglutarate) and [Cu2(cda)2(bpy)]n (4, cda = 1,1-cyclopentanediacetate). All materials were characterized by single-crystal X-ray diffraction. Compound 1 manifests μ2-oxygen bridged [Cu2(Hdmg)4] “X”-patterns connected into a ribbon motif by bpy linkers. On the other hand, 2 possesses mixed-valence [CuICuIICuIICuI] tetrameric clusters bridged by dmg ligands and pillared into an 8-connected body-centered cubic (bcu) cationic lattice by bpy linkers. Compounds 3 and 4 are structurally very similar, displaying chain motifs with {Cu2(CO2)4} paddlewheels connected by dicarboxylates, in turn conjoined into (4,4)-grid coordination polymer layers by bpy tethers. Variable temperature magnetic data indicate the presence of very strong antiferromagnetic coupling within the {Cu2(CO2)4} paddlewheels in the latter two complexes, with g = 2.30(2) and J = −352(3) cm−1 for 3 and g = 2.35(2) and J = −352(5) cm−1 for 4. Significant structural contrasts are evident when compared to previously reported divalent copper/4,4′-bipyridine coordination polymers with unsubstituted or 2-methyl substituted glutarate ligands.  相似文献   

12.
Four MII quinolinato complexes, [Zn2(quin)2(H2O)3]n (1), [Zn(quin)(H2O)2]n (2), [Zn(quin)(H2O)]n (3) and [Cd(quin)]n (4) (H2quin = 2,3-pyridinedicarboxylic acid or quinolinic acid), have been hydrothermally synthesized and structurally characterized. X-ray diffraction analyses reveal that all of these four complexes are constructed from similar rod-like SBUs, [M(quin)]n (M = Zn or Cd). Complexes 1 and 2 have similar 1-D box-like chains but different packing structures; complex 3 has a 2-D grid-like network and complex 4 has an unusual 2-D bilayer structure. Due to the different structural features, these complexes exhibit different photoluminescent emissions: complex 1 at 439 nm (λex = 345 nm), complex 2 at 428 nm (λex = 360 nm), complex 3 at 508 nm (λex = 304 nm) and complex 4 at 500 nm (λex = 324 nm).  相似文献   

13.
Four novel coordination polymers, one-dimensional chains [M(PTE)2(N3)2]n (M = Mn for 1 and Co for 2), and two-dimensional layers [M(PTE)2(dca)2]n (M = Mn for 3 and Co for 4) (PTE = 1-(2,4-difluorophenyl-2-(1H-1,2,4-triazol-1-yl)ethanone, dca = dicyanamide anion, N(CN)2), have been synthesized under mild ambient conditions and structurally characterized by single crystal X-ray diffraction. In all four crystal structures, the metal atoms adopt octahedral coordination geometry with six nitrogen atoms from two monodentate PTE ligands and four azido (or dca) bridging ligands. The crystal structures of 1 and 2 are isostructural 1-D polymeric chains, alternatively linked by double end-on and double end-to-end azido bridges. However, the bent dca ligands as bidentate μ2-1,5 bridging ligands interlink the octahedral metal units to lead to 2-D (4,4) grid networks in 3 and 4. Temperature-dependent magnetic measurements in 2-300 K have been performed for these four polymers, and suggest alternative ferro- and antiferromagnetic couplings for end-on and end-to-end azido bridges in 1, and the dominant ferromagnetic coupling in 2, respectively. Both polymers 3 and 4 show weak antiferromagnetic exchanges through the μ2-1,5-dca bridges. The effects of auxiliary coligands on the structure and the nature of these magnetic exchanges are discussed in the light of the crystal structures in detail.  相似文献   

14.
Hua Jin 《Inorganica chimica acta》2007,360(10):3347-3353
Three new organic-inorganic hybrid compounds [CuI(2,2′-bipy)(4,4′-bipy)0.5]2[CuI(2,2′-bipy)(4,4′-Hbipy)][CuI(4,4′-bipy)]2[P2W18O62] · 3H2O (1), [CuI(2,2′-bipy)(4,4′-bipy)0.5]2[CuI(4,4′-bipy)]2[PW12O40] · 0.25H2O (2), and[CuI(4,4′-bipy)]3[PMo12O40] · en · 3H2O (3) (2,2′- bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. Compound 1 represents the first 1D ladderlike structure formed by Dawson-type polyoxoanion [P2W18O62]6− and coordination polymer with mixed 4,4′-bipy and 2,2′-bipy ligands. The novel structure of 2 is composed of 1D hybrid zigzag chains linked by chains into a 3D framework. In compound 3, the [PMo12O40]3− clusters are hung on chains to form a new 1D chain.  相似文献   

15.
Five new supramolecular lanthanide coordination polymers with three different structures, {[La2(IA)3(phen)2] · 2H2O}n (1), {[Ln(IA)1.5(phen)] · xH2O}n [x = 1, Ln = Eu (2); x = 0.25, Ln = Dy (3)], and [Ln(IA)1.5(phen)]n [Ln = Er (4); Yb (5)], were prepared by hydro- and solvothermal reactions of lanthanide chlorides with itaconic acid (H2IA) and 1,10-phenanthroline (phen), and structurally characterized by single crystal X-ray diffraction. 1 Comprises 1-D double-chains that are further assembled to a 3-D supramolecular structure via hydrogen bonds and π-π stacks between phen molecules. 2 and 3 have 2-D infinite networks which are further constructed to form 3-D supramolecular architectures with 1-D channels by π-π aromatic interactions. 4 and 5 have 2-D layer structures consisting of three types of rings which are further architectured to form 3-D supramolecular structures by C-H?O hydrogen bonds. The H2IA ligands are all completely deprotonated and exhibit tetra-, penta-, and hexadentate coordination modes in the titled complexes. The high-resolution emission spectrum of 2 shows only one Eu3+ ion site in 2, which is in agreement with the result of X-ray diffraction. And the magnetic property and the thermal stability of 2 were also investigated.  相似文献   

16.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

17.
Four new fluconazole-bridged zinc(II) and cadmium(II) complexes with dicarboxylate co-ligands, namely [Zn(HFlu)(TPA)]n (1), {[Cd(HFlu)2(TPA)]·2CH3OH}n (2), [Zn(HFlu)2(Suc)(H2O)2]·H2O (3), and [Cd(HFlu)2(Suc)(H2O)2]·H2O (4), have been synthesized and characterized by elemental analysis, IR, TG, and single-crystal X-ray diffraction (HFlu = 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)-propan-2-ol, H2TPA = terephthalic acid, and H2Suc = succinic acid). Complex 1 displays a 2-D corrugated network with common (4,4) topology, in which two types of grids constructed by two bridging TPA dianions and two HFlu ligands are found. Complex 2 shows an unusual (3,6) coordination layer consisting of alternative PMPM Cd-HFlu helical chains in which the Cd(II) nodes are also fixed by terephthalate dianions in a cis fashion. The isostructural complexes 3 and 4 have 20-membered dimeric macrocyclic motifs with the Zn···Zn and Cd···Cd distances of 11.258(2) and 11.528(2) Å, respectively. The fluorescence and thermal stability of complexes 1-4 have also been investigated.  相似文献   

18.
Two new neutral, binuclear CuIICuII bis(oxamato) complexes with the formula [Cu2(opba)(pmdta)(MeOH)] · 1/2MeOH · dmf (3) and [Cu2(nabo)(pmdta)(MeOH)] (4), with opba = o-phenylene-bis(oxamato), nabo = 2,3-naphthalene-bis(oxamato), pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine and dmf = dimethylformamide have been synthesized and their crystal structures have been determined. The structure of 3 consists of dimeric [Cu2(opba)(pmdta)(MeOH)] entities, joined together by mutual intermolecular Cu?O contacts of the Cu2+ ion of one [Cu(opba)]2− complex fragment and one carboxylate atom of the oxamato group of a second [Cu(opba)]2− complex fragment. The structure of 4 consists of neutral binuclear complexes joined together by hydrogen bonds and π-π interactions, giving rise to an unique supramolecular 1D-chain. The magnetic properties of 3 and 4 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter, identical values of (−114 ± 2) cm−1 (3) and (−112 ± 2) cm−1 (4) were obtained.  相似文献   

19.
The reaction of aqueous solutions of the preformed 1:1 Cu(ClO4)2-polydentate amine with tetrasodium 1,2,4,5-benzene tetracarboxylate (Na4bta) afforded three different types of polynuclear compounds. These include the tetranuclear complexes: [Cu4(Medpt)44-bta)(ClO4)2(H2O)2](ClO4)2·2H2O (1), [Cu4(pmdien)44-bta)(H2O)4](ClO4)4 (2), [Cu4(Mepea)44-bta)(H2O)2](ClO4)4(3), [Cu4(TPA)44-bta)](ClO4)4·10H2O (4) and [Cu4(tepa)44-bta)](ClO4)4·2H2O (5), the di-nuclear: [Cu2(DPA)22-bta)(H2O)2]·4H2O (6), [Cu2(dppa)22-bta)(H2O)2]·4H2O (7) and [Cu2(pmea)22-bta)]·14H2O (8) and the trinuclear complex [Cu3(dppa)33-bta)(H2O)2.25](ClO4)2·6.5H2O (9) where Medpt = 3,3′-diamino-N-methyldipropylamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, Mepea = [2-(2-pyridyl)ethyl]-(2-pyridylmethyl)methylamine, TPA = tris(2-pyridylmethyl)amine, tepa = tris[2-(2-pyridyl)ethyl)]amine, DPA = di(2-pyridymethyl)amine, dppa = N-propanamide-bis(2-pyridylmethyl)amine and pmea = bis(2-pyridylmethyl)-[2-(2-pyridylethyl)]amine. The complexes were structurally characterized by elemental analyses, spectroscopic techniques, and by X-ray crystallography for complexes 1, 2, 4, 6, 7 and 9. X-ray structure of the complexes reveal that bta4− is acting as a bridging ligand via its four deprotonated caboxylate groups in 1, 2 and 4, three carboxylate groups in 9 and via two trans-carboxylates in 6 and 7. The complexes exhibit extended supramolecular networks with different dimensionality: 1-D in 2 and 4 due to hydrogen bonds of the type O-H···O, 2-D in 1 and 7, and 3-D network in 6 as a result of hydrogen bonds of the types N-H···O and O-H···O. Magnetic susceptibility measurements showed very weak antiferromagnetic coupling between the CuII ions in 1-5, 7-9 (|J| = 0.02-0.87 cm−1) and weak ferromagnetic coupling for 6 (= 0.08 cm−1).  相似文献   

20.
Hydrothermal synthesis has afforded a pair of divalent copper coordination polymers containing the kinked and hydrogen-bonding capable imine 4,4′-dipyridylamine (dpa) and aromatic dicarboxylates, {[Cu(iph)(dpa)]·0.5H2O}n (1, iph = isophthalate) and [Cu(tdc)(dpa)]n (2, tdc = 2,5-thiophenedicarboxylate). Compounds 1 and 2 contain orthogonally disposed parallel sets of 1-D [Cu(iph)]n and [Cu(tdc)]n chains, respectively, containing dicarboxylate-bridged dinuclear {CuOCO}2 units. The chain motifs are joined by tethering dpa ligands to construct uncommon non-interpenetrated 3-D CdSO4 lattices (658 topology) in both cases. Variable temperature magnetic studies show the presence of weak antiferromagnetic coupling within the {CuOCO}2 dimers in both complexes, with J = −2.66(3) and −1.68(5) cm−1 for 1 and 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号