首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transition metal (M = Mn(II), Co(II), Ni(II) and Cu(II)) complexes with octahydro-Schiff base (H4-N4O4) = 2,7,13,18-tetramethyl-3,6,14,17-tetraazatricyclo-[17.3.1.1]-tetracosa-1(23),2,6,8(24),9,11,13,17,19,21-decaene-9,11,20,22-tetraol; H4([H]8-N4O4) = 2,7,13,,18-tetramethyl-3,6,14,17-tetraazatricyclo-[17.13.1.1.]-tetracosa-1(23),8(24),9,11,19,21-hexane-9,11,20,22-tetraol) have been encapsulated in nanopores of zeolite-Y; [M([H]8-N4O4)]@NaY; with Flexible Ligand Method (FLM) for the first time. The new Host-Guest Nanocomposite Materials (HGNM) was characterized by several techniques: chemical analysis, spectroscopic methods (DRS, FT-IR and UV/Vis), BET technique, conductometric and magnetic measurements. The catalytic activities for oxidation of cyclohexane with HGNM complexes are reported. Zeolite encapsulated octahydro-Schiff base copper(II) complex; [Cu([H]8-N4O4)]@NaY; was found to be more active than the corresponding cobalt(II), manganese(II) and nickel(II) complexes for cyclohexane oxidation. The catalytic properties of the complexes are influenced by their geometry and by the steric environment of the active sites. HGNM are stable enough to be reused and are suitable to be utilized as partial oxidation catalysts. The encapsulated catalysts systems; [M([H]8-N4O4)]@NaY; were more active than the corresponding neat complexes; [M([H]8-N4O4))].  相似文献   

2.
Oxovanadium(IV) complexes of the polyalcohols sorbitol, galactitol, and mannitol, of stoichiometry Na(2)[VO(L)(2)].H(2)O, were obtained from aqueous alkaline solutions. They were characterized by elemental analysis, infrared and UV-vis spectroscopies, thermoanalytical (thermogravimetric and differential thermal analysis) data, and magnetic susceptibility measurements. The biological activities of the complexes on the proliferation, differentiation, and glucose consumption were tested on osteoblast-like cells (MC3T3E1 osteoblastic mouse calvaria-derived cells and UMR106 rat osteosarcoma-derived cells) in culture. The three complexes exerted a biphasic effect on cell proliferation, being slight stimulating agents at low concentrations and inhibitory in the range of 25-100 microM. All the complexes inhibited cell differentiation in tumor osteoblasts. Their effects on glucose consumption were also discussed. The free ligands did not show any effect on the studied biological parameters.  相似文献   

3.
The complexation of VO(2+) ion by ten acetamidrazone and 2-phenylacetamidrazone derivatives (L) was studied. Sixteen novel VO(2+) complexes were synthesised and characterised through the combined application of analytical and spectroscopic (EPR (electron paramagnetic resonance), FT-IR and diffuse reflectance electronic absorption) techniques. Eight are 1:2 species of composition [VOL(2)]SO(4) x xH(2)O and eight are 1:1 species with formula [VOL(SO(4))](n) x xH(2)O. The experimental data suggest a bidentate coordination mode for L with the donor set formed by the imine nitrogen and the carbonyl oxygen. EPR spectra indicate a square-pyramidal geometry for the 1:1 complexes and a penta-coordinated geometry intermediate between the square-pyramid and the trigonal-bipyramid for the 1:2 species. The hyperfine coupling constant along z axis, A(z), of the 1:2 complexes exhibits a marked reduction with respect to the predicted value (approximately 148x10(-4)cm(-1) vs. approximately 170x10(-4)cm(-1)). IR spectroscopic evidence supports the presence of sulphate as a counter-ion in the 1:2, and as a bridging bidentate ligand in the 1:1 complexes. Insulin-mimetic tests on modified fibroblasts, based on a modified MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazoliumbromide) assay, performed on three of the bis-chelated and eight of the mono-chelated derivatives, indicate that they are biologically active. The similar hydro/lipophilicity and the lack of ligand substituents recognizable by cell membrane receptors prevent substantial differentiation in the insulin-mimetic action.  相似文献   

4.
A series of oxovanadium(IV) symmetrical tetradentate Schiff base complexes have been isolated from the reaction of VOSO4 with Schiff bases obtained from the condensation of 2-hydroxybenzophenone or 2-hydroxy-5-chlorosalicylaldehyde with various aliphatic diamines. The compounds were characterized by elemental analyses, 1H NMR, infrared, electron paramagnetic resonance, electronic spectral, cyclic voltammetry and room temperature magnetic susceptibility measurements. The solution EPR spectra are consistent with square pyramidal complexes with C4v symmetry. The IR spectra confirmed that the complexes are all monomeric except for [VO(Clsal)2tn] which polymerizes via OV?VO linkages. The electronic spectra indicate a square pyramidal geometry in both non-coordinating and coordinating solvents except for [VO(bp2-pn)] which appears to be octahedral in DMSO. The room temperature magnetic moments of 1.7-1.8 B.M. are normal for V(IV) d1 configuration. Evidence for electrochemical pseudo-reversibility is presented for four of the complexes. In vitro studies revealed that two of the compounds, [VO(bp2-en] and [VO(bp2-tn)MeOH], significantly increased glucose uptake when compared to the basal glucose uptake in transformed and sensitized C1C12 cells, but not at the same level as insulin.  相似文献   

5.
Seven new mixed-ligand vanadyl complexes, [VIVO(5-Br-SAA)(NN)] and [VIVO(2-OH-NAA)(NN)] (1-7) (5-Br-SAA for 5-bromosalicylidene anthranilic acid, 2-OH-NAA for 2-hydroxy-1-naphthaldehyde anthranilic acid and NN for N,N′-donor heterocyclic base, namely, 2,2′-bipyridine (bpy, 1 and 5), 1,10-phenanthroline (phen, 2 and 6), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3 and 7), dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4)), were synthesized and characterized. X-ray crystal structure of [VIVO(5-Br-SAA)(phen)] revealed a distorted octahedral geometry with the Schiff base ligand coordinated in a tridentate ONO-fashion and the phenanthroline ligand in a bidentate fashion. Density-functional theory (DFT) calculations suggest a similar structure and the same coordination mode for all the other oxovanadium complexes synthesized. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of protein tyrosine phosphatase 1B (PTP1B), with IC50 values approximately 41-75 nM. Kinetics assays suggest that the complexes inhibit PTP1B in a competitive manner. Notably, they had moderate selectivity of PTP1B over T-cell protein tyrosine phosphatase (TCPTP) (about 2-fold) and good selectivity over Src homology phosphatase 1 (SHP-1) (about 4∼7-fold). Thus, these mixed-ligand complexes represent a promising class of PTP1B inhibitors for future development as anti-diabetic agents.  相似文献   

6.
The interaction of the VO2+ cation with homocysteine, was investigated by electron absorption spectroscopy in aqueous solution at different metal-to-ligand ratios. The direct reduction of vanadate(V) solutions with homocysteine was also investigated. The results suggest that the interaction is different from that found in the case of cysteine and occurs through pairs of amino and carboxylate groups of the amino acid. The interaction of VO2+ with homocystine, the oxidation product of homocysteine, was also analyzed. The interest of the results in relation to vanadium metabolism and detoxification is briefly discussed.  相似文献   

7.
Ternary oxovanadium(IV) complexes [VO(salmdtc)(B)] (1-3), where salmdtc is dianionic N-salicylidene-S-methyldithiocarbazate and B is N,N-donor phenanthroline bases like 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 3), are prepared, characterized and their DNA binding and DNA cleavage activity studied. Complex 3 is structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in six-coordinate VN3O2S coordination geometry. The S-methyldithiocarbazate Schiff base acts as a tridentate NSO-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo-group. The complexes show a d-d band in the range of 675-707 nm in DMF. They exhibit an irreversible oxidative cyclic voltammetric response near 0.9 V due to the V(V)/V(IV) couple and a quasi-reversible reductive V(IV)/V(III) redox couple near −1.0 V vs. SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range of 7.4 × 104-2.3 × 105 M−1. The thermal denaturation and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor chemical nuclease activity in dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity in UV-A light of 365 nm via a type-II mechanistic pathway involving formation of singlet oxygen (1O2) as the reactive species.  相似文献   

8.
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaldehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2′-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [VIVO(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [VVO(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of VIV → VV) in the synthesis of pentavalent complexes (5) and (6). [VIVO(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [VVO(L)(hq)] complexes are diamagnetic. The X-ray structure of [VVO(L2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by ∼0.07 Å and is identical with V-O (carboxylate) bond. 1H NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)-(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near −0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+E1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E1/2 increases in the order: (L2)2− < (L1)2−.  相似文献   

9.
Oxovanadium(IV) complexes have been synthesized and characterized the general composition [VOL(A)], where H2L = salicylidene-o-aminothiophenol A1 = bis(benzylidene)ethylenediamine, A2 = bis(acetophenone)ethylenediamine, A3 = 2,2′-bipyridylamine, A4 = bis(benzylidene) ? 1,8-diaminonaphthalene, A5 = thiophene-o-carboxaldeneaniline and A6 = thiophene-o-carboxaldene-p-anisidine. Spectral studies indicate that the oxovanadium(IV) complexes assume a six-coordinate octahedral geometry. The antibacterial activities of the complexes against Salmonella typhi, Escherichia coli and Serratia mercescens are higher as compared to the free ligands, vanadyl sulphate, and the control (DMSO) but of moderate activity as compared to the standard drug (tetracycline).  相似文献   

10.
The five-coordinate oxovanadium(IV) complexes; [VO(pimin)2] (1a), [VO(Etpimin)2] (2) and [VO(EtOHpimin)2] (3), were prepared by reacting the ligands; 2-(2′-hydroxyphenyl)-1H-imidazoline (piminH), 2-(2′-hydroxyphenyl)-1-ethylimidazoline (EtpiminH) and 2-(2′-hydroxyphenyl)-1-ethanolimidazoline (EtOHpiminH), with VOSO4. The complexes were characterized by elemental analysis, IR, UV-Vis and cyclic voltammetry. All complexes show VO stretching vibrations between 932 and 987 cm−1. The presence of three d-d transition occurring between 400 and 625 nm and the irreversible oxidation (VIV → VV) between 400 and 490 mV confirm the d1 electronic configuration of the complexes. The solid state structures of [VO(pimin)2] (1a) and its autoxidation hydrolysis product [VO2(pimin)(piminH′)] (1b) were determined by single crystal X-ray diffraction. The geometry of [VO(pimin)2] was found to be intermediate between trigonal bipyramidal and square pyramidal and sits on a crystallographic twofold axis, while the geometry of [VO2(pimin)(piminH′)] was distorted trigonal bipyramidal. Potentiometric titrations were used to determine the protonation and stability constants for the ligands and oxovanadium(IV) complexes, respectively. The species existing over a biological pH range were also investigated. The in vitro studies indicated that the oxovanadium(IV) complexes were effective in enhancing glucose uptake in the 3T3-L1 adipocytes, C2C12 muscle cells and Chang liver cell lines. In these cell lines, the anti-hyperglycemic effect was equivalent to or surpassed the effect of metformin.  相似文献   

11.
To investigate the structure-activity relationship of vanadium complexes in inhibiting protein tyrosine phosphatase1B (PTP1B), eight mixed-ligand oxovanadium(IV) complexes, [VIVO(SalAla)(NN)] (H2SalAla for salicylidene alanine, NN for N,N′-donor heterocyclic base, namely, 2,2′-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3), dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4)), [VIVO(SalLys)(dpq)] (5), [VIVO(SalLys)(dppz)] (6), [VIVO(SalAsp)(dppz)], (7) and [VIVO(SalTrp)(dppz)] (8)), of which 3-8 are new, have been prepared and characterized by elemental analysis, infrared, UV-visible, electrospray ionization mass spectrometry and conductivity. The molar conductance data confirmed the non-electrolytic nature of the complexes in DMSO solution. The coordination in [VIVO (SalAla)(phen)] (2) was confirmed by X-ray crystal structure analysis. The oxidation state of V(IV) with d1 configuration in 2 was confirmed by EPR. The speciation of VO-SalAla-phen in aqueous solution was investigated by potentiometric pH titrations. The results indicate that the main species are two ternary complexes at the pH range 7.0-7.4. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of PTP1B with IC50 values in the range of 62-597 nM, approximately 3-10 fold weaker in potency than those of similar mixed-ligand oxovanadium(IV) complexes of salicylidene anthranilic acid (SAA) derivative with polypyridyl ligands, except complex 8, which exhibits comparable or better inhibition activity than those of the mixed-ligand oxovanadium(IV) complexes of SAA derivative with polypyridyl ligands. The results demonstrate that the structures of vanadium complexes influence the PTP1B inhibition activity. Kinetics assays reveal that complex 2 inhibits PTP1B in a competitive manner.  相似文献   

12.
Oxovanadium(IV) complexes [VO(L)(B)] (1-3), where H2L is a Schiff base ligand 2-(2-hydroxybenzylideneamino)phenol and B is 1,10-phenanthroline (phen for 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq for 2) or dipyrido[3,2-a:2′,3′-c]phenazine (dppz for 3), have been prepared, characterized and their DNA binding property and photo-induced DNA cleavage activity studied. Complex 3 which is structurally characterized by X-ray crystallography shows the presence of an oxovanadium(IV) moiety in a six coordinate VO3N3 coordination geometry. The complexes show a d-d band within 800-850 nm in DMF. The complexes display an oxidative response near 0.7 V versus SCE for V(V)-V(IV) and a reductive response within −1.1 to −1.3 V due to V(IV)-V(III) couple in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA giving binding constant values of 4.2 × 104 to 1.2 × 105 M−1. The complexes do not show any “chemical nuclease” activity in dark. The dpq and dppz complexes are photocleavers of plasmid DNA in UV-A light of 365 nm via 1O2 pathway and in near-IR light (752.5 to 799.3 nm IR optics) by HO pathway. Complex 3 exhibits significant photocytotoxicity in visible light in HeLa cells giving IC50 value of 13 μM, while it is less toxic in dark (IC50 = 97 μM).  相似文献   

13.
Two novel oxovanadium(IV) complexes [VOL1]SO4 (1) and [VOL2]SO4 (2) containing Knoevenagel condensate Schiff base ligand (L1/L2) have been synthesized and characterized by physical, spectral and analytical methods. These complexes are reported as ionic in nature on the basis of elemental composition and molar conductance, and possess square pyramidal geometry around the central metal ions. The binding interactions of (1) and (2) with calf thymus DNA (CT DNA) were explored by absorption spectrophotometric titration, cyclic voltammetry data and viscosity measurements. The calculated intrinsic binding constant values (Kb) for (1) and (2) obtained from UV–Vis absorption studies are 0.4 × 105 and 5.6 × 105 (M−1) respectively. These experimental results indicate that (1) and (2) are intercalative binders and avid binder to CT DNA with different affinities. These complexes exhibit significant oxidative cleavage of supercoiled plasmid (pUC18) DNA in the presence of activators. In particular, the in vitro antimicrobial efficacy of oxovanadium(IV) complexes reveal that they are more active than free ligands. Besides, the in vitro cytotoxic effect of the titled complexes were examined on a bundle of human tumor cell lines such as MCF-7 and HeLa cancerous cell lines by the MTT method. Interestingly, complex (2) exhibits more potent cytotoxic activity than the other complex and standard drug (cisplatin). The mode of cell death was assessed by Hoechst 33258 staining morphological studies.  相似文献   

14.
The interaction of the VO2+ cation with the sodium salt of 2,3-dimercapto-1-propanesulfonic acid (DMPS) was investigated by electron absorption spectroscopy in aqueous solution, in the pH range between 4 and 12. The spectral behavior points to the generation of a [VO(DMPS)2]4− complex in which the oxocation interacts with two pairs of deprotonated –SH groups of the ligand. By spectrophotometric monitoring it was found that DMPS rapidly reduces vanadates(V) to VO2+ which may be chelated by an excess of the acid. DMPS produces also the slow reduction of a V2O5 suspension at pH 7.1. The results of this study suggest that DMPS may be a potentially useful detoxification agent for vanadium.  相似文献   

15.
Abstract  A series of oxovanadium complexes with mixed ligands, a tridentate ONO-donor Schiff base ligand [viz., salicylidene anthranilic acid (SAA)], and a bidentate NN ligand [viz., 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[3,2-a:2′,3′-c]phenazine (dppz), or 7-methyldipyrido[3,2-a:2′,3′-c]phenazine (dppm)], have been synthesized and characterized by elemental analysis, electrospray ionization mass spectrometry, UV–vis spectroscopy, Fourier transform IR spectroscopy, EPR spectroscopy, and X-ray crystallography. Crystal structures of both complexes, [VIVO(SAA)(bpy)]·0.25bpy and [VIVO(SAA)(phen)]·0.33H2O, reveal that oxovanadium(IV) is coordinated with one nitrogen and two oxygen atoms from the Schiff base and two nitrogen atoms from the bidentate planar ligands, in a distorted octahedral geometry (VO3N3). The oxidation state of V(IV) with d 1 configuration was confirmed by EPR spectroscopy. The speciation of VO–SAA–bpy in aqueous solution was investigated by potentiomtreic pH titrations, and the results revealed that the main species are two ternary complexes at a pH range of 7.0–7.4, and one is the isolated crystalline complex. The complexes have been found to be potent inhibitors against human protein tyrosine phosphatase 1B (PTP1B) (IC50 approximately 30–61 nM), T-cell protein tyrosine phosphatase (TCPTP), and Src homology phosphatase 1 (SHP-1) in vitro. Interestingly, the [VIVO(SAA)(bpy)] complex selectively inhibits PTP1B over the other two phosphatases (approximate ninefold selectivity against SHP-1 and about twofold selectivity against TCPTP). Kinetics assays suggest that the complexes inhibit PTP1B in a competitive and reversible manner. These suggest that the complexes may be promising candidates as novel antidiabetic agents. Graphical Abstract   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Two platinum(IV) complexes, [Pt(4bt)Cl4] (4) and [Pt(dpyam)Cl4]·DMF (5) (where 4bt is 4,4′-bithiazole and dpyam is 2,2′-dipyridylamine) were prepared from the reaction of H2PtCl6·6H2O with 4,4′-bithiazole and 2,2′-dipyridylamine, respectively, in methanol. Both complexes were fully characterized and their structures were determined by the X-ray diffraction method. These complexes have a bidentate nitrogenous ligand with four chloride anions attached to a Pt(IV) metal in a distorted octahedral environment. These complexes along with three previously reported analogous complexes were used for in vitro cytotoxicity evaluation against four cultures, NIH-3T3, Caco-2, HT-29 and T47D by MTT assay. The methyl group position in the ligand plays an important role in the cytotoxicity of relevant compounds in different cultures. Interestingly, in some cases, the IC50 values of the new complexes were higher for normal cells but lower against cancer cells in comparison with cisplatin, especially in T47D (breast ductal carcinoma).  相似文献   

17.
Reactions of [PtMe3(bpy)(Me2CO)][BF4] (2) with the thionucleobases 2-thiouracil (s2Ura), 4-thiouracil (s4Ura) and 2,4-dithiouracil (s2s4Ura) resulted in the formation of complexes of the type [PtMe3(bpy)(L-κS)][BF4] (L = s2Ura, 3; s4Ura, 4; s2s4Ura, 5). The complexes were characterized by NMR spectroscopy (1H, 13C, 195Pt), IR spectroscopy as well as microanalyses. The coordination through the C4S groups (4, 5) was additionally confirmed by DFT calculations, where it was shown that these complexes [PtMe3(bpy)(L-κS4)]+ (L = s4Ura, s2s4Ura) are about 5.8 (4b) and 3.3 kcal/mol (5b), respectively, more stable than the respective complexes, having thiouracil ligands bound through the C2X groups (X = O, 4a; S, 5a). For [PtMe3(bpy)(s2Ura-κS2)][BF4] (3) no preferred coordination mode could be assigned solely based on DFT calculations. Analysis of NMR spectra showed the κS2 coordination. In vitro cytotoxic studies of complexes 3−5 on nine different cell lines (8505C, A253, FaDu, A431, A549, A2780, DLD-1, HCT-8, HT-29) revealed in most cases moderate activities. However, 3 and 5 showed significant activity towards A549 and A2780, respectively, possessing IC50 values comparable to those of cisplatin. Cell cycle perturbations and trypan blue exclusion test on cancer cell line A431 using [PtMe3(bpy)(s2s4Ura-κS4)][BF4] (5) showed induction of apoptotic cell death. Furthermore, the reaction of [PtMe3(OAc-κ2O,O′)(Me2CO)] (6) with 4-thiouracil yielded the dinuclear complex [(PtMe3)2(μ-s4Ura-H)2] (7), which has been characterized by microanalysis, NMR (1H, 13C, 195Pt) and IR spectroscopy as well as ESI mass spectrometry. X-ray diffraction analysis of crystals yielded in an isolated case exhibited the presence of a hexanuclear thiouracilato platinum(IV) complex, possessing each three different kinds of methyl platinum(IV) moieties and 4-thiouracilato ligands. This exhibited the ability of 4-thiouracil platinum(IV) complexes to form multinuclear complexes.  相似文献   

18.
By reaction of 2,6-diformyl-4-methylphenol (BDF) with the amino acids l-His and l-Ala in the presence of VOCl2, two new oxovanadium(IV) complexes with the ligand obtained by the 1:2 condensation of BDF with the amino acids, BDF-His and BDF-Ala, were synthesised. The compounds were characterised in the solid state by elemental analyses, IR, CD and magnetic susceptibility measurements, and in the mother liquor by EPR. In water-containing solutions, BDF-Ala and BDF-His partially hydrolyse but the degree of Schiff base formation increases upon addition of VOSO4. The equilibria in the system VIVO2+ + BDF-His were studied by spectroscopic methods (EPR, CD and UV-Vis) in the pH range 1.5-12. The coordination behaviour of the ligand changes as the pH increases, leading to the formation of four main species all involving Ophen as donor atom. Plausible binding modes are discussed based on the spectroscopic results.  相似文献   

19.
Four organotin(IV) complexes with general formula [RSnCln−1(TCB)] [R = Ph2, n = 2 (2); R = Me, n = 3 (3); R = Bu, n = 3 (4); R = Ph, n = 3 (5)] have been synthesized by direct reaction of thiophene-2-carboxaldehyde benzhydrazone ligand [HTCB, (1)], base and organotin(IV) chloride in absolute methanol under N2 atmosphere. All organotin(IV) complexes were characterized by elemental analyses, molar conductivity, UV-Vis, FT-IR, 1H and 13C NMR spectral studies. Among them, diphenyltin(IV) complex (2) has also been characterized by X-ray crystallography diffraction analyses. The cytotoxicity of the hydrazone ligand as well as its organotin(IV) complexes (2-5) were determined with Artemia salina. While no-choice bioassay was employed on Coptotermes sp. to evaluate the termiticidal effect of all the complexes. Besides, the ligand (1) and its organotin(IV) complexes (2-4) were also tested against five types of bacteria namely Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi.  相似文献   

20.
The reaction of H2[PtCl6] · 6H2O and (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O (18C6 = 18-crown-6) with 9-methylguanine (MeGua) proceeded with the protonation of MeGua forming 9-methylguaninium hexachloroplatinate(IV) dihydrate (MeGuaH)2[PtCl6] · 2H2O (1).The same compound was obtained from the reaction of Na2[PtCl6] with (MeGuaH)Cl.On the other hand, the reaction of guanosine (Guo) with (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O in methanol at 60 °C proceeded with the cleavage of the glycosidic linkage and with ligand substitution to give a guaninium complex of platinum(IV), [PtCl5(GuaH)] · 1.5(18C6) · H2O (2).Within several weeks in aqueous solution a slow reduction took place yielding the analogous guaninium platinum(II) complex, [PtCl3(GuaH)] · (18C6) · 2Me2CO (3).H2[PtCl6] · 6H2O and guanosine was found to react in water, yielding (GuoH)2[PtCl6] (4) and in ethanol at 50 °C, yielding [PtCl5(GuoH)] · 3H2O (5).Dissolution of complexes 2 and 5 in DMSO resulted in the substitution of the guaninium and guanosinium ligands, respectively, by DMSO forming [PtCl5(DMSO)].Reactions of 1-methylcytosine (MeCyt) and cytidine (Cyd) with H2[PtCl6] · 6H2O and(H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O resulted in the formation of hexachloroplatinates with N3 protonated pyrimidine bases as cation (MeCytH)2[PtCl6] · 2H2O (6) and (CydH)2[PtCl6] (7), respectively. Identities of all complexes were confirmed by 1H, 13C and 195Pt NMR spectroscopic investigations, revealing coordination of GuoH+ in complex 5 through N7 whereas GuaH+ in complex 3 may be coordinated through N7 or through N9. Solid state structure of hexachloroplatinate 1 exhibited base pairing of the cations yielding (MeGuaH+)2, whereas in complex 6 non-base-paired MeCytH+ cations were found. In both complexes, a network of hydrogen bonds including the water molecules was found. X-ray diffraction analysis of complex 3 exhibited a guaninium ligand that is coordinated through N9 to platinum and protonated at N1, N3 and N7. In the crystal, these NH groups form hydrogen bonds N–HO to oxygen atoms of crown ether molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号