首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reaction of Cu(ClO4)2·6H2O, SRaaiNR′ (1-alkyl-2-[(o-thioalkyl)phenylazo]imidazole) and NH4SCN (1:1:2 mol ratio) affords distorted square pyramidal, [CuII(SRaaiNR′)(SCN)2] (3) compound while identical reaction with [Cu(MeCN)4](ClO4) yields -SCN- bridged coordination polymer, [CuI(SRaaiNR′)(SCN)]n (4). These two redox states [CuII and CuI] are interconvertible; reduction of [CuII(SRaaiNR′)(SCN)2] by ascorbic acid yields [CuI(SRaaiNR′)(SCN)]n while the oxidation of [CuI(SRaaiNR′)(SCN)]n by H2O2 in presence of excess NH4SCN affords [CuII(SRaaiNR′)(SCN)2]. They are structurally confirmed by single crystal X-ray diffraction study. Cyclic voltammogram of the complexes show Cu(II)/Cu(I) redox couple at ∼0.4 V and azo reductions at negative to SCE. UV light irradiation in MeCN solution of [CuI(SRaaiNR′)(SCN)]n (4) show trans-to-cis isomerisation of coordinated azoimidazole. The reverse transformation, cis-to-trans, is very slow with visible light irradiation while the process is thermally accessible. Quantum yields (?t→c) of trans-to-cis isomerisation are calculated and free ligands show higher ? than their Cu(I) complexes. The activation energy (Ea) of cis-to-trans isomerisation is calculated by controlled temperature experiment. Copper(II) complexes, 3, do not show photochromism. DFT and TDDFT calculation of representative complexes have been used to determine the composition and energy of molecular levels and results have been used to explain the solution spectra, photochromism and redox properties of the complexes.  相似文献   

2.
Copper(II) complexes of a series of linear pentadentate ligands containing two benzimidazoles, two thioether sulfurs and a amine nitrogen, viz. N,N-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}amine(L1), N,N-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}N-methylamine (L2), 2,6-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}pyridine(L3), N,N-bis{4-(2″-benzimidazolyl)-2-thiabutyl}amine (L4), N,N-bis{4-(2″-benzimidazolyl)-2-thiabutyl}N-methylamine (L5) and 2,6-bis{4-(2″-benzimidazolyl)-2-thiabutyl}-3pyridine (L6) have been isolated and characterized by electronic absorption and EPR spectroscopy and cyclic and differential pulse voltammetry. Of these complexes, [Cu(L1)](BF4)2 (1) and [Cu(L2)](BF4)2 (4) have been structurally characterized by X-ray crystallography. The coordination geometries around copper(II) in 1 and 4 are described as trigonal bipyramidal distorted square based pyramidal geometry (TBDSBP). The distorted CuN3S basal plane in them is comprised of amine nitrogen, one thioether sulphur and two benzimidazole nitrogens and the other thioether sulfur is axially coordinated. The ligand field spectra of all the complexes are consistent with a mostly square-based geometry in solution. The EPR spectra of complexes [Cu(L1)](BF4)2 (1), [Cu(L1)](NO3)2 (2), [Cu(L2)](BF4)2 (4) and [Cu(L3)](ClO4)2 (6) are consistent with two species indicating the dissociation/disproportionation of the complex species in solution. All the complexes exhibit an intense CT band in the range 305-395 nm and show a quasireversible to irreversible CuII/CuI redox process with relatively positive E1/2 values, which are consistent with the presence of two-coordinated thioether groups. The addition of N-methylimidazole (mim) replaces the coordinated thioether ligands in solution, as revealed from the negative shift (222-403 mV) in the CuII/CuI redox potential. The present study reveals that the effect of incorporating an amine nitrogen donor into CuN2S2 complexes is to generate an axial copper(II)-thioether coordination and also to enforce lesser trigonality on the copper(II) coordination geometry.  相似文献   

3.
The synthesis, X-ray structures and electrochemical properties of stable five-coordinate, trigonal-bipyramidal CuI complexes of dafone (4,5-diaza-fluoren-9-one) [Cu(dafone)2X] with X=Br (1) or I (2) as ancillary ligands are discussed. The thiocyanate-bridged polymeric CuI complex of dafone, [Cu(dafone)(SCN)]n (3), forms two-dimensional sheets in the crystal, held together by weak interactions involving the dafone ketone group, while the phenanthroline complex, [Cu(phen)(SCN)]n (4), a zigzag arrangement of the phen ligands leads to interchain π-stacking within the lattice. The electrochemical studies reveal that dafone stabilizes the CuI oxidation state more efficiently than phen due to its better π-acceptor ability as indicated by more positive redox potentials for the CuI/CuII couple.  相似文献   

4.
Three new o-thioetherphenol ligands have been synthesized: 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)ethane (H2bse), 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)benzene (H2bsb), and 4,6-di-tert-butyl-2-phenylsulfanylphenol (Hpsp). Their complexes with copper(II) were prepared and investigated by UV-Vis-, EPR-spectroscopy; their electro- and magnetochemistry have also been studied: [CuII(psp)2] (1), [CuII2(bse)2] (2), [CuII2(bsb)2] (3), [CuII(bsb)(py)2] (4). The crystal structures of the ligands H2bse, H2bsb, Hpsp and of the complexes 1, 2, 3, 4 have been determined by X-ray crystallography.  相似文献   

5.
Two benzoate complexes namely tetrakis(μ2-benzoato-O,O)-bis(μ2-benzoato-O,O)-bis(nicotinamide-N)-tri-zinc(II), [Zn3(benz)6(nia)2] (I) and bis(benzoato-O)-bis(methyl-3-pyridylcarbamate-N)-zinc(II), [Zn(benz)2(mpcm)2] (II) (benz=benzoate anion, nia=nicotinamide, mpcm=methyl-3-pyridylcarbamate) were prepared and characterised by elemental analysis, IR spectroscopy, thermal analysis and X-ray structure determination. The structure of the complex I is centrosymmetric, formed by a linear array of three zinc atoms. The central zinc atom shows octahedral coordination and is bridged to each of the terminal zinc atoms by three benzoate anions. Two of them act as bidentate, one as monodentate ligand. By additional coordination of the nia ligand, the terminal Zn atoms adopt tetrahedral surrounding. The structure of complex II contains two crystallographically independent [Zn(benz)2(mpcm)2] molecules. In each molecule, the zinc atom is tetrahedrally coordinated by two monodentate benzoate and two methyl-3-pyridylcarbamate ligands. Intermolecular hydrogen bonds of the N-H?O type connect molecules in the structures of complexes I and II to form a two-dimensional network. The three different types of carboxylate binding found in the complexes were distinguished also by values of carboxylate stretching vibrations in FT-IR spectra as well as by thermal decomposition of the complexes in nitrogen.  相似文献   

6.
Dinuclear copper(I) complexes with bridging bis(dicyclohexylphosphino)methane (dcpm) or bis(diphenylphosphino)methane (dppm) and 2,2′-bipyridine or 2-[N-(2-pyridyl)methyl]amino-5,7-dimethyl-1,8-naphthyridine (L), [Cu2(bpy)2(dppm)2](BF4)2 (1), [Cu2(bpy)2(dcpm)](BF4)2 (2), [Cu2(L)(dppm)](BF4)2 (3) and [Cu2(L)(dcpm)](BF4)2 (4) were prepared, and their structures were determined by X-ray crystal analysis. Two-, three-, and four-coordinate copper(I) centers are found in these complexes. Compounds 3 and 4 show close CuI?CuI separations of 2.664(3) and 2.674(1) Å, respectively, whereas an intramolecular copper-copper distance of 3.038 Å is found in 2 having only dcpm as an additional bridge. Powdered samples of 1, 3, and 4 display intense and long-lived phosphorescence with λmax at 533, 575, and 585 nm at room temperature, respectively. In the solid state, 2 exhibits only a weak emission at 555 nm. The time-resolved absorption and emission spectra of these complexes were investigated. The difference in the emission properties among complexes 1-4 suggests that both CuI?CuI distances and coordination environment of the copper(I) centers affect the excited-state properties.  相似文献   

7.
Three new coordination polymers based on IB metal thiocyanates, [CuII(NCS)2(DMSO)4(meso-dpb)]n (1), (2), [CuI(NCS)(pia)]n (3) (dpb = 2,3-di(4-pyridyl)-2,3-butanediol, bpp = 1,3-bis(4-pyridyl)propane, pia = N,N′-(1,2-phenylene)diisonicotinamide), have been synthesized by the pre-assembly method and characterized by X-ray crystallography. In 1, CuII cations are bridged by meso-dpb ligands to form a one-dimensional (1D) linear chain. Compound 2 consists of 2D undulated layers of (4, 4) topology that show twofold parallel interpenetration. In the case of 3, the MI center adopts tetrahedral coordination geometry and the 2D networks are formed by organic ligand with “folding ruler-shaped” NCS-M chains. The thermal properties of 1-3 were also investigated.  相似文献   

8.
A tridentate NNO donor Schiff base ligand [(1Z,3E)-3-((pyridin-2-yl)methylimino)-1-phenylbut-1-en-1-ol = LH] in presence of azide ions coordinates with cobalt(II) and copper(II) ions giving rise to three new coordination complexes [Co2(L)21,1-N3)2(N3)2] (1), [Cu2(L)21,3-N3)]·ClO4 (2) and [(μ1,1-N3)2Cu5(μ-OL)21,1-N3)41,1,1-N3)2]n (3). The complexes have been characterized by elemental analysis, FT-IR, UV-Vis spectral studies, and single crystal X-ray diffraction studies. These complexes demonstrate that under different synthetic conditions the azide ions and the Schiff base ligand (LH) show different coordination modes with cobalt(II) and copper(II) ions, giving rise to unusual dinuclear and polynuclear species (1, 2 and 3) whose structural variations are discussed. Magneto-structural correlation for the very rare singly μ1,3-N3 bridged CuII-Schiff base dinuclear species (2) has been studied. In addition, the catalytic properties of 1 for alkene oxidation and the general catalase-like activity behavior of 2 have been discussed.  相似文献   

9.
The synthesis and characterisation of two dicopper(II) and two dinickel(II) macrocyclic complexes, [CuII2LPr] (10), [CuII2LBu] (11), [NiII2LPr] (12) and [NiII2LBu] (13), are reported. The two new Schiff-base macrocycles (LPr)4− and (LBu)4− are isolated as dimetallic complexes 10-13 by the [2+2] condensation of 5,5-dimethyl-1,9-diformyldipyrromethane (9) and 1,3-diaminopropane or 1,4-diaminobutane, respectively, using Cu2+ or Ni2+ template ions. Single crystal X-ray structure determinations carried out on 10-13 show that each metal atom is in a square planar N4 geometry, being bound to two deprotonated pyrrole nitrogen atoms of one dipyrromethane unit and to the two adjacent imine nitrogen atoms. NMR spectra obtained for the two dinickel(II) complexes 12 and 13 show that in CDCl3 solution they are highly symmetrical and diamagnetic.  相似文献   

10.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

11.
The reaction of the new bidirectional ligand 3-phenyl-5-(2-pyridyl)-4-(4-pyridyl)-4H-1,2,4-triazole (pyppt) with Cu(ClO4)2 · 6H2O in a 2:1 molar ratio in EtOH affords the complex [CuII(pyppt)2(ClO4)2] · H2O (1) as a microcrystalline turquoise solid. Recrystallisation of complex 1 from MeCN by vapour diffusion of Et2O gives blue crystals of the monomeric octahedral complex [CuII(pyppt)2(ClO4)2] · MeCN (2). In contrast, addition of EtOH to a solution of complex 1 in MeCN followed by slow evaporation yields blue crystals of the five-coordinate polymeric complex {[CuII(pyppt)2](ClO4)2 · EtOH} (3). The structures of both complexes have been determined by single crystal X-ray diffraction.  相似文献   

12.
The synthesis, structure and spectral and redox properties of the copper(II) complexes [Cu(pmtpm)Cl2] (1) and [Cu(pmtpm)2](ClO4)2 (6), where pmtpm is the linear tridentate ligand 2-pyridyl-N-(2′-methylthiophenyl)methyleneimine containing a thioether and two pyridine donors, are described. Also, the mixed ligand complexes [Cu(pmtpm)(diimine)](ClO4)2 (2-5), where the diimine is 2,2′-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp) (4) or dipyrido-[3,2-d:2′,3′-f]-quinoxaline (dpq) (5), have been isolated and studied. The X-ray crystal structures of the complexes 1, [Cu(pmtpm)(2,9-dmp)](ClO4)24 and 6 have been successfully determined. The complex 1 possesses a trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry in which three corners of the square plane are occupied by two nitrogens and thioether s of pmtpm ligand and the remaining equatorial and the axial positions by two chloride ions. The complex 4 contains a CuN4S chromophore also with a TBDSBP coordination geometry in which two nitrogens and the thioether sulfur of pmtpm ligand occupy three corners of the square plane. One of the two nitrogens of 2,9-dmp ligand is equatorially coordinated and the other axially to copper. On the other hand, the complex 6 is found to possess a square based pyramidal distorted trigonal bipyramidal (SPDTBP) coordination geometry. The CuN2S trigonal plane in it is comprised of the pyridine and imine nitrogens and the thioether sulfur of the pmtpm ligand. The pyridine nitrogens of the ligand occupy the axial positions and the second thioether sulfur remains uncoordinated. On long standing in acetonitrile solution the mixed ligand complexes 2 and 3 undergo ligand disproportionation to provide the corresponding bis-complexes of bpy and phen, respectively, and 6. The electronic and EPR spectral parameters and the positive redox potential of complex 4 are consistent with the equatorial location of the thioether sulfur in the square-based coordination geometry around copper(II). On the other hand, the higher g and lower A values and lower E1/2 values for the complexes 2, 3 and 5 are consistent with the axial coordination of the thioether sulfur. Also, the Cu(II)/Cu(I) redox potentials increase with increase in number of aromatic rings of the diimine ligand. The steric and electronic effects of the bidentate diimine ligands in orienting the thioether coordination to axial or equatorial position are discussed.  相似文献   

13.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

14.
Bis-bidentate Schiff base ligand L and its two mononuclear complexes [CuL(CH3CN)2]ClO4 (1) and [CuL(PPh3)2]ClO4 (2) have been prepared and thoroughly characterized by elemental analyses, IR, UV-Vis, NMR spectroscopy and X-ray diffraction analysis. In both the complexes the metal ion auxiliaries adopt tetrahedral coordination environment. Their reactivity, electrochemical and photophysical behavior have been studied. Complex 1 shows reversible CuII/I couple with potential 0.74 V versus Ag/AgCl in CH2Cl2. At room temperature L is weakly fluorescent in CH2Cl2, however in Cu(I) complexes 1 and 2 the emission in quenched.  相似文献   

15.
The synthesis and characterisation of eight new octahedral PtIV complexes of the type trans,trans,trans-[Pt(N3)2(OH)2(NH3)(Am)] where Am = methylamine (2), ethylamine (4), thiazole (6), 2-picoline (8), 3-picoline (10), 4-picoline (12), cyclohexylamine (14), and quinoline (16) are reported, including the X-ray crystal structures of complexes 2, 8, and 14 as well as that of two of the precursor PtII complexes (trans-[Pt(N3)2(NH3)(methylamine)] (1) and trans-[Pt(N3)2(NH3)(cyclohexylamine)] (13)). Irradiation with UVA light rapidly induces loss in intensity of the azide-to-PtIV charge-transfer bands and gives rise to photoreduction of platinum. These complexes have potential for use as photoactivated anticancer agents.  相似文献   

16.
Reaction of the potassium salts of (EtO)2P(O)CH2C6H4-4-(NHC(S)NHP(S)(OiPr)2) (HLI), (CH2NHC(S)NHP(S)(OiPr)2)2 (H2LII) or cyclam(C(S)NHP(S)(OiPr)2)4 (H4LIII) with [Cu(PPh3)3I] or a mixture of CuI and Ph2P(CH2)1-3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Cu(PPh3)LI] (1), [Cu2(Ph2PCH2PPh2)2LII] (2), [Cu{Ph2P(CH2)2PPh2}LI] (3), [Cu{Ph2P(CH2)3PPh2}LI] (4), [Cu{Ph2P(C5H4FeC5H4)PPh2}LI] (5), [Cu2(PPh3)2LII] (6), [Cu2(Ph2PCH2PPh2)LII] (7), [Cu2{Ph2P(CH2)2PPh2}2LII] (8), [Cu2{Ph2P(CH2)3PPh2}2LII] (9), [Cu2{Ph2P(C5H4FeC5H4)PPh2}2LII] (10), [Cu8(Ph2PCH2PPh2)8LIIII4] (11), [Cu4{Ph2P(CH2)2PPh2}4LIII] (12), [Cu4{Ph2P(CH2)3PPh2}4LIII] (13) or [Cu4{Ph2P(C5H4FeC5H4)PPh2}4LIII] (14) complexes. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy; their compositions were examined by microanalysis. The luminescent properties of the complexes 1-14 in the solid state are reported.  相似文献   

17.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

18.
Reaction of the potentially tetradentate N-donor ligand 6,6′-bis(4-methylthiazol-2-yl)-2,2′-bipyridine (L1) with the transition metal dications CoII, NiII, CuII, CdII and HgII results in the formation of mononuclear [M(L1)]2+ complexes, in which a planar ligand coordinates to the metals via all four N-donors. In contrast, reaction of L1 with CuI and AgI monocations, affords dinuclear double stranded helicate species [M2(L1)2]2+ (where M = CuI or AgI), in which partitioning of the ligand into two bis-bidentate pyridyl-thiazole chelating units allows each ligand to bridge both metal centres. X-Ray crystallography, electrospray mass spectroscopy and NMR spectroscopy reveal that the complexes [Mn(L1)m]z+ (where n = 1, m = 1 and z = 2, when M = CoII, NiII, CuII, CdII and HgII; n = 2, m = 2 and z = 2, when M = CuI), retain their solid-state structures in solution. Conversely, whilst 1H NMR studies suggest that combination of equimolar amounts of Ag(X)(where ) and L1 (in either nitromethane or acetonitrile) results in the formation of a helicate in solution, in the solid-state, an anion-templating effect gives rise to either mononuclear or dinuclear helicate structures [Agn(L1)n][X]n (where n = 2 when X = OTf; n = 1 when ).  相似文献   

19.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

20.
A series of mononuclear manganese(III) complexes of formulae [Mn(L)(X)(H2O)] (1-13) and [Mn(L)(X)] (14-17) (X = ClO4, F, Cl, Br, I, NCS, N3), derived from the Schiff bases of 5-bromosalicylaldehyde and different types of diamine (1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane and 1,4-diaminobutane), have been synthesized and characterized by the combination of IR, UV-Vis spectroscopies, cyclic voltammetry and by X-ray crystallography. The redox properties of all the manganese(III) complexes show grossly identical features consisting of a reversible or quasireversible MnIII/MnII reduction. Besides MnIII/MnII reduction, the complexes 4, 5, 10, 13 and 16 also show reversible or quasireversible MnIII/MnIV oxidation. A linear correlation has been found for the complexes 5, 7, 11 and 13 [Mn(L2)(X)(H2O)] (X = F, Cl, Br, I) when E1/2 [MnIII/MnII] is plotted against Mulliken electronegativities (χM). The effect of the flexibility of the ligand on redox potential has been studied. It has been observed that the manganese(II) state is stabilized with increasing flexibility of the ligand environment. The crystal structure of 6 shows an octahedral geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号