首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Two novel Zn(II) coordination polymers, [Zn(2-pytpy)(fum)]n·nH2O (1) and [Zn6(4-pytpy)3(mal)4]n·5n(H2O) (2), (2-pytpy = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, 4-pytpy = 4′-(4-pyridyl)-4,2′:6′,4″-terpyridine, H2fum = fumaric acid and H2mal = malic acid) have been hydrothermally synthesized and structurally characterized. Notably, in situ ligand reactions occur in the formation of complexes 1 and 2, in which maleic acid is converted into fumaric acid and malic acid, respectively. Complex 1 is a 1D infinite chain structure, which is extended into a supramolecular layer by intermolecular π…π stacking interactions. Complex 2 is a 3D network structure, in which the bidentate-bridging 4-pytpy ligands link the layers based on the tetranuclear Zn(II) subunits to form the (4,10)-connected network. The luminescent properties of 1 and 2 have been investigated with emission spectra and UV-Vis diffuse reflectance spectra in the solid state. Additionally, these two complexes possess great thermal stabilities.  相似文献   

2.
1,10-Phenanthroline hydrogen phthalato manganese(II) dimer [Mn2(Hphth)2(phen)4] · 2Hphth · 6H2O (1), monomeric phenanthroline phthalato manganese(II) monomer [Mn(phth)(phen)2(H2O)] · 2.5H2O (2), 2,2′-bipyridine phthalato manganese(II) polymer [Mn(phth)(bpy)(H2O)2]n (3) and 1,10-phenanthroline maleato polymer [Mn(male)(phen)(H2O)2]n · 2nH2O (4) (H2phth = o-phthalic acid, male = maleic acid, phen = 1,10-phenanthroline and bpy = 2,2′-bipyridine) have been synthesized and characterized spectroscopically and structurally. Each Mn(II) atom in dimeric 1 is octahedrally coordinated by two oxygen atoms of phthalate anions and by two cis-phenanthroline ligands. The hydrogen phthalato anion bridges the Mn(II) ions through the deprotonated carboxyl groups, while the carboxylic acid group remains free. In the monomeric 2, the Mn(II) ion is octahedrally surrounded by four nitrogen atoms from two cis-phen ligands, one carboxyl oxygen from a monodentate phth ion, and one coordinated water molecule. The dimeric phthalato complex 1 can be cleaved into monomer 2 under heating with deprotonation, and the course of the reaction can be qualitatively traced by IR spectra. The phthalate group in the complex 3 binds to two manganese atoms through the vicinal carboxyl-oxygen atoms in syn-syn bridging mode. The Mn(II) atoms are linked by the phthalate group to yield a one-dimensional chain running along the a-axis. The coordination polymer 3 can be obtained from the reaction of dichloro dibipyridine manganese with phthalate under heating. In polymer 4, the manganese atom is six-coordinated by two nitrogen atoms from phen, two oxygen atoms from the coordinated water molecules and two oxygen atoms from two different maleate dianions. Each maleato unit links two neighboring manganese atoms to yield one-dimensional chain along b-axis in bis-monodentate mode. The single-chain polymer 4 prepared at low temperature can be converted to double-chain coordination polymer [Mn(male)(phen)]n · nH2O (5) with dehydration in warm solution.  相似文献   

3.
One-dimensional (1-D) helical coordination polymers, [MII(H2O)3(BPDC)]n · nH2O (M = Co (1), Fe (2)), have been prepared by the self-assembly of cobalt(II) and iron(II) ions, respectively, with 2,2′-bipyridyl-3,3′-dicarboxylic acid (H2BPDC) in an aqueous solution. X-ray crystal structures of compounds 1 and 2 show that each metal ion displays a distorted octahedral coordination geometry including three water oxygen atoms, one oxygen atom of the carboxylate of a BPDC2− belonging to the adjacent metal ion and two nitrogen atoms from the BPDC2− acting as a chelating ligand. In 1 and 2, one carboxylate oxygen atom of coordinated BPDC2− binds to the neighboring metal ion, which give rise to 1-D helical coordination polymers. The helical chains of 1 and 2 are linked by the hydrogen bonding interactions between the carboxylate oxygen atom of the BPDC2− ion belonging to a chain and the water molecule of the adjacent helical chain, which lead to 2-D networks extending along the ab plane. The supramolecules 1 and 2 show isomorphous structures regardless of the metal ions.  相似文献   

4.
Jing Xu 《Inorganica chimica acta》2009,362(11):4002-4008
Three new coordination polymers {[Cu(HL)(H2O)]·H2O}n (1), [Ag(H2L)]n (2), and {[Co(HL)(phen)(H2O)]·8H2O}n (3) [H3L = 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid, phen = 1,10-phenanthroline] have been synthesized under hydrothermal conditions. The results of X-ray diffraction analysis revealed that complex 1 displays (3, 3)-connected 2D network with (4, 82) topology, while complexes 2 and 3 have infinite 1D chain structure, in which one of the two carboxylic groups of H2L/HL2− is uncoordinated. The 2D layers of 1 or the 1D chains of 2 and 3 are further linked together by hydrogen bonds and π-π interactions to form 3D supramolecular frameworks. Moreover, the electrochemical properties of complexes 1 and 2 have been studied by modified glassy carbon electrodes of 1 (Cu-GCE) and 2 (Ag-GCE), and the results indicate that the Cu-GCE and Ag-GCE show one-electron redox peaks. In addition, both Cu-GCE and Ag-GCE have good electrocatalytic activities toward the reduction of H2O2 in phosphate buffer (pH 5.5) solution.  相似文献   

5.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

6.
Three new Zn(II) complexes based on different organic-carboxylic acids, [Zn(mba)2(2,2′-bipy)] (1), [Zn(mpdaH)2(H2O)4] · 4H2O (2) and [Zn(cda)2(H2O)2]n (3) (Hmba = 4-methylbenzoic acid, H2mpda = 2,6-dimethylpyridine-3,5-dicarboxylic acid and H2cda = chelidonic acid) have been synthesized successfully under hydrothermal conditions. X-ray single crystal diffractions show that compounds 1 and 2 are the mononuclear and 3 is one-dimensional chain, in which the Zn(II) centers have different coordination geometries with octahedron for 1 and 2 and tetrahedron for 3. Through π-π stacking and/or hydrogen bonding (O-H?O and O-H?N) interactions, different supramolecular structures are assembled, namely, 2D supramolecular layer for 1 and 3D supramolecular networks for 2 and 3. Furthermore, the IR, TGA and luminescent properties are also investigated in this work.  相似文献   

7.
[Pd(sac)(terpy)](sac)·4H2O (1), [Pt(sac)(terpy)](sac)·5H2O (2), [PdCl(terpy)](sac)·2H2O (3) and [PtCl(terpy)](sac)·2H2O (4) (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine) have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR. In 1 and 2, a tridentate terpy ligand together with an N-coordinated sac ligand form the square-planar geometry around the palladium(II) or platinum(II) ions, while one sac anion remains outside the coordination sphere as a counter-ion. X-ray single crystal studies show that the [M(sac)(terpy)]+ ions in 1 and 2 reside in the centers of a hydrogen bonded honeycomb network formed by the uncoordinated sac ions and the lattice water molecules. Complexes 3 and 4 are isostructural and consist of a [M(Cl)(terpy)]+ cation, a sac anion and two lattice water molecules. The [M(Cl)(terpy)]+ ions interact with each other via M-M and π-π stacking interactions and these π interacted units are assembled to a 2D network by water bridges involving the sac ions and lattice water molecules. Convenient synthetic paths for 1-4 are also presented, and spectral, luminescence and thermal properties were discussed.  相似文献   

8.
Six new coordination polymers based on V-shaped linkage 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (bpt) and transition metal ions, [Co(bpt)(pm)0.5(H2O)]n · 3nH2O (1), [Cu2(bpt)(pm)(H2O)4]n (2), [Co(bpt)(pydc)]n · 2nCHCl3 · nH2O (3), [Cu2(bpt)(pydc)2(H2O)2]n (4), [Cu2(bpt)(pydco)2(H2O)2]n · nH2O (5) and [Cd(bpt)(pydco)]n (6) (H4pm = pyromellitic acid, H2pydc = pyridine-2,6-dicarboxylic acid, H2pydco = pyridine-2,6-dicarboxylic acid N-oxide), have been synthesized under the intervention of various polycarboxylate ligands. Complex 1 exhibits a 3-D 4-connected structure with 1-D nanosized open channels encapsulated lots of water molecules. Complex 2 represents a 2-D grid containing two types of rectangular windows. When pydc and pydco instead of pm, complexes 3 and 6 were obtained with highly undulated 2-D layers. The interlayers of 3 are filled with two kinds of solvent molecules, whereas 6 is a double-layered framework without free molecules. Complexes 4 and 5 consist of two distinct 1-D infinite chains held together to form different 2-D supramolecular networks. Importantly, bpt spacer shows changeful conformational geometries and generates complicated crystalline architectures with the introduction of polycarboxylate ligands. Additionally, thermal stability of complexes 1, 3 and 5, fluorescent properties of 6 and X-ray powder diffraction of 1 have also been investigated.  相似文献   

9.
Three one-dimensional zinc complexes, namely, [Zn(pzdc) · 3H2O] · H2O (1), [Zn2(pzdc)· 4H2O] · 2.5H2O (2), and [Zn(pzdc)(phen) · 4H2O]n (3) (H2pzdc, pyrazine-2,3-dicarboxylic acid, phen = 1,10-phenanthroline), have been synthesized successfully under hydrothermal condition. X-ray diffraction analyses reveal that complex 1 is a square-wave-like chain and complex 2 shows a 1D ladder-like infinite chain, while complex 3 has 1D zigzag chain structure. In all cases, the Zn(II) centers have octahedral coordination geometries. Through hydrogen bonding (such as O-H···O, O-H···N and C-H···O) and/or π-π stacking interactions, three-dimensional supramolecular networks are constructed in three complexes. Furthermore, the IR, TGA and luminescent properties are also investigated in this work.  相似文献   

10.
Four new coordination complexes, NiII(L)2 (1), [CoIII(L)2]ClO4 (2), [Zn(HL)(L)]ClO4 · H2O (3) and [Zn(L)2][Zn(L)(HL)]ClO4 · 7H2O (4) (where L is a monoanion of a Schiff base ligand, N′-[(2-pyridyl)methylene]salicyloylhydrazone (HL) with NNO tridentate donor set), have been synthesised and systematically characterised by elemental analysis, spectroscopic studies and room temperature magnetic susceptibility measurements. Single crystal X-ray diffraction analysis reveals that 1 is a neutral complex, while 2-4 are cationic complexes. Among them, 4 is a rare type of cationic complex with two molecules in the asymmetric unit. The ligand chelates the metal centre with two nitrogen atoms from the pyridine and imino moieties and one oxygen atom coming from its enolic counterpart. All the reported complexes show distorted octahedral geometry around the metal centres, with the two metal-N (imino) bonds being significantly shorter than the two metal-N (Py) bonds.  相似文献   

11.
Three novel coordination complexes [Mn(tpha)(phen)]n (1); [Mn(na)2(H2O)2]n (2); {[Mn(phen)2(OH)Cl] · Cl · (OH) · (C9H11NO2) · 2H2O} (3) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction (H2tpha = terephthalic acid, Hna = nicotinic acid, phen = 1,10-phenanthroline). The tpha groups in complex 1 bridge the Mn(II) ions to an infinite 3D framework. Complex 2 exhibits a 2D network structure in which the Mn(II) ions are linked by nicotinic groups. Complex 3 is connected to a 2D coordination supramolecule by hydrogen bonds. The results of surface photovoltage spectra (SPS) of complexes 1-3 indicate that they all exhibit positive surface photovoltage (SPV) responses in the range of 300-800 nm. However, the intensity, position and numbers of SPV responses are obviously different. The distinctions can be mainly attributed to their structures, valences and coordination environments of the manganese ions in the three complexes. Moreover the external field induced surface photovoltage spectra (FISPS) of the three complexes have been measured.  相似文献   

12.
By pH-value adjustment, the reactions of zinc salt, 1,3,5-benzenetricarboxylic acid (H3btc) and 4,4′-bipyridine (bpy) yield three coordination polymers, formulated as [Zn3(btc)2(bpy)(H2O)2]n (1), [Zn(Hbtc)(bpy)(H2O)]n · 3nH2O (2) and [Zn(Hbtc)(bpy)(H2O)]n · 4nH2O (3), respectively. The structure of 1 is a 3D network containing channels filled with bpy ligands. Compound 2 consists of twofold interpenetrating (10,3)-b networks, while compound 3 is a 2D layer structure. The fluorescent studies reveal that they exhibit intense violet luminescence in solid state.  相似文献   

13.
Four coordination compounds of tetrazolate-5-carboxylate (tzc) with cobalt(II), [Co2(tzc)2(H2O)6]·2H2O (1), [Co2(tzc)2(phen)2(H2O)2]·2H2O (2), [Co2(tzc)2(2,2′-bpy)2(H2O)2]·H2O (3), and [Co(tzc)(4,4′-bpy)] (4), where phen = 1,10-phenanthroline, 2,2′-bpy = 2,2′-bipyridyl, and 4,4′-bpy = 4,4′-bipyridyl, have been synthesized by the hydrothermal methods involving the in situ generation of the ligand from sodium ethyl tetrazolate-5-carboxylate. Compounds 1, 2 and 3 all contain dinuclear molecules in which metal ions are linked by the double N-N bridges from two tzc ligands in the μ2-N1,O1:N2 mode, and the dinuclear molecules are associated into 3D architecture through extensive hydrogen bonding and π-π stacking interactions in various fashions. Compound 4 exhibits a two-dimensional layer structure in which Co(tzc) chains with μ3-N1,O1:O1:N2 tzc are cross-linked by 4,4′-bpy. Magnetic investigations on 1-3 revealed intramolecular ferromagnetic coupling through the double N-N bridges with intermolecular ferromagnetic or antiferromagnetic interactions. The interaction through the mixed N-N and μ2-Ocarboxylate bridges in 4 is antiferromagnetic.  相似文献   

14.
The complexes [Cu2(o-NO2-C6H4COO)4(PNO)2] (1), [Cu2(C6H5COO)4(2,2′-BPNO)]n (2), [Cu2(C6H5COO)4(4,4′-BPNO)]n (3), [Cu(p-OH-C6H4COO)2(4,4′-BPNO)2·H2O]n (4), (where PNO = pyridine N-oxide, 2,2′-BPNO = 2,2′-bipyridyl-N,N′-dioxide, 4,4′-BPNO = 4,4′-bipyridyl-N,N′-dioxide) are prepared and characterized and their magnetic properties are studied as a function of temperature. Complex 1 is a discrete dinuclear complex while complexes 2-4 are polymeric of which 2 and 3 have paddle wheel repeating units. Magnetic susceptibility measurements from polycrystalline samples of 1-4 revealed strong antiferromagnetic interactions within the {Cu2}4+ paddle wheel units and no discernible interactions between the units. The complex 5, [Cu(NicoNO)2·2H2O]n·4nH2O, in which the bridging ligand to the adjacent copper(II) ions is nicotinate N-oxide (NicoNO) the transmitted interaction is very weakly antiferromagnetic.  相似文献   

15.
Four new Cu(II) complexes [Cu(pzda)(2,2′-bpy)(H2O)] · 2.5H2O (1), [Cu(pzda)(phen)(H2O)] · H2O (2), [Cu(pzda)(4,4′-bpy)] · H2O (3) and [Cu(pzda)(bpe)0.5(H2O)] (4) were synthesized by hydrothermal reactions of copper salt (acetate or sulphate) with pyrazine-2,6-dicarboxylic acid (H2pzda), and 2,2′-bipyridine (2,2′-bpy), 1,10-phenanthroline (phen), 4,4′-bipyridine (4,4′-bpy) or 1,2-bis(4-pyridyl)-ethane (bpe), respectively. For 1 and 2, they are both monomeric entities which are further assembled into 3D supramolecular networks by hydrogen bonds and π-π stacking interactions. Complex 3 has a 2D metal-organic framework which is connected into 3D supramolecular network by hydrogen bonds. However, for 4, the bpe ligand bridges two Cu(II) ions into binuclear unit, and then the binuclear molecules are assembled into 3D supramolecular network by hydrogen bonds between the coordination water molecule and the carboxylate oxygen atoms. The thermal decomposition mechanism of complexes 1 and 2 cooperated with powder XRD at different temperatures is discussed. The results reveal that once liberation of water molecules takes place the supramolecular network of 1 and 2 collapses.  相似文献   

16.
Two new Mn(II) coordination polymers with bis(5-tetrazolyl)methane (H2btm), [Mn(btm)(phen)(H2O)] · H2O (1) and [Mn(btm)(2,2′-bpy)] · 1.5H2O (2), have been synthesized and their structures determined by X-ray diffraction. In complex 1, the btm ligands assume the μ2-1,1′:4 coordination mode and interlink Mn(II) ions into infinite one-dimensional chains. The chains are assembled into a three-dimensional architecture via hydrogen bonds and π-π interactions. For 2, Mn(II) ions are connected by btm ligands in the μ3-1,1′:2:3′ mode to produce two-dimensional (6,3) coordination network. Magnetic investigations revealed that interactions through the btm bridges in both 1 and 2 are antiferromagnetic.  相似文献   

17.
Three novel complexes [Mn(atza)2(H2O)4] (1), [Mn(nptza)2(CH3OH)4] (2), and [Mn(a4-ptz)2(H2O)2]n · 2nH2O] (3) [atza = 5-aminotetrazole-1-acetato, nptza = 5-[(4-nitryl)phenyl] tetrazole-1-acetato, a4-ptz = 5-[N-acetato(4-pyridyl)] tetrazole] containing carboxylate-tetrazolate ligands have been synthesized and characterized by element analysis. X-ray crystallography shows that complexes 1 and 2 both contain mononuclear structure. The complex 3 is a 1D polymeric chain structure. Compounds 1-3 are self-assembled to form supramolecular structures through hydrogen bonds interactions.  相似文献   

18.
A three dimensional supramolecular network, {[Co(bpee)(H2O)4] · (tp) · 2(H2O)}n (1) [bpee = trans-1,2 bis(4-pyridyl)ethylene; tp = terephthalate dianion] has been synthesized and characterized by X-ray single crystal structure, magnetic measurement and thermal analysis. The structure determination reveals that the cobalt(II) ions, bridged by bpee and coordinated by four water molecules, give rise to covalently linked 1D polymeric chain. The parallel chains get involved in H-bonding with tp resulting in a 3D architecture. Upon heating 1, which is pink in color, transforms to [Co(bpee)(tp)] (1a, blue). The deaquated species (1a) reverts on keeping in humid atmosphere. Low temperature magnetic data indicate weak antiferromagnetic coupling.  相似文献   

19.
Four novel coordination polymers, [Cd(Hdtbb)(dtbb)0.5(DMF)]n (1), {[Cd(dtbb)(2,2′-bpy)(H2O)]·2DMA}n (2), {[Cd2(dtbb)2(1,4-bix)2]·3DMF}n (3) and [Cd(dtbb)(1,4-btx)]n (4) [H2dtbb = 2,2-dithiobisbenzoic acid, 2,2′-bpy = 2,2′-bipyridine, 1,4-bix = 1,4-bis(imidazol-1-ylmethyl)benzene, 1,4-btx = 1,4-bis(triazol-1-ylmethyl)benzene] have been synthesized and structurally characterized. Complexes 1 and 2 possess one-dimensional (1D) infinite structures. The structures of complexes 3 and 4 exhibit two dimensional (2D) frameworks, which mainly due to the differences in the bridging modes of dtbb2− ligand and the effect of the N-donor auxiliary ligands. The infrared spectra, thermogravimetric and luminescent properties were also investigated for these compounds.  相似文献   

20.
Although the 2,2′-biphenyldicarboxylate ligand (2,2′-dpa) has been widely used to construct metal-organic frameworks (MOFs) with helical sub-structure, the effect of the helical arrangement of spin carriers on the magnetic properties remains rarely scarce. In this article, two unique magnetic metal-organic supramolecular frameworks with different structural features, [Cu2(dpa)2(H2O)2(4,4′-dpdo)0.5]n (1) and [Ni(H2O)4(dpa)] · (4,4′-dpdo)(H2O) (2) (dpdo = 4,4′-dipyridine-N,N′-dioxide), have been isolated from the direct reaction of H2dpa with their corresponding salts in the presence of dpdo. In complex 1, the Cu-dpa double-helical chains, which are bridged by long flexible μ2-dpdo ligands to give rise to a regular 63 covalent layer, exhibit strong antiferromagnetic coupling interactions. Whereas the 1D [Ni(dpa)]n helical chains in complex 2 exhibit weak antiferromagnetic coupling interactions. Rich hydrogen bonds between perpendicular 1D [Ni(dpa)]n helical chains and quasi-1D (dpdo)n chains result in an intricate 3D supramolecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号