首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

2.
Two new Zn(II) complexes containing guanidinium groups, [Zn(L1)Cl2](ClO4)2 · H2O · CH3OH (1) and [Zn(L2)Cl2](ClO4)2 · 0.5H2O (2), were synthesized and characterized (L1 = 5,5′-di[1-(guanidyl)methyl]-2,2′-bipyridyl bication and L2 = 6,6′-di[1-(guanidyl)methyl]-2,2′-bipyridyl bication). Both complexes are able to catalyze bis(p-nitrophenyl) phosphate (BNPP) hydrolysis efficiently. Obtained kinetic data reveal that both 1 and 2 show nearly 300- and 600-fold rate enhancement of BNPP hydrolysis, respectively, compared to their simple analogue without the guanidinium groups [Zn(bpy)Cl2] (bpy = 2,2′-bipyridy) (3). Enhanced acceleration for cleavage of BNPP could be attributed to cooperative interaction between the Zn(II) ion and the guanidinium groups by electrostatic interaction and H-bonding. Studies on inhibition of sequence-specific endonucleases (DraI and SmaI) by complexes show that 1 and 2 are able to recognize nucleotide sequence, -TTT^AAA-, and highly effectively cleave the plasmid DNA in the presence of hydrogen peroxide, while 3 has no specific binding to the DNA target sequences and only shows low DNA cleavage activity.  相似文献   

3.
Two isomeric dibenzo-O2S2 macrocycles L1 and L2 have been synthesised and their coordination chemistry towards palladium(II) has been investigated. Two-step approaches via reactions of 1:1-type complexes, [cis-Cl2LPd] (1a: L = L1, 1b: L = L2), with different O2S2 macrocycle systems (L1 and L2) have led to the isolation of the following bis(O2S2 macrocycle) palladium(II) complexes in the solid state: [Pd(L1)2](ClO4)2 (2a) and a mixture of [Pd(L1)2](ClO4)2 (2a) + [Pd(L2)2](ClO4)2 (2b).  相似文献   

4.
Four copper(II) complexes [Cu2(1,3-tpbd)Cl4]·EtOH (1), {[Cu2(1,3-tpbd)(μ-Cl)2](ClO4)2(H2O)4.5 (NaClO4)} (2), [Cu2(1,3-tpbd)(1,10-phen)2(H2O)2](ClO4)4 (3) and [Cu2(1,3-tpbd)(2,2′-bpy)2(H2O)2](ClO4)4 (4) (1,3-tpbd = N,N,N′,N′-tetrakis(2-pyridylmethyl)benzene-1,3-diamine) have been synthesized and characterized by X-ray single crystal structure analysis. Variable-temperature magnetic susceptibility studies (2-300 K) indicate the existence of antiferromagnetic coupling between the copper(II) ions in complexes 2 and 3. The interactions of the four complexes with calf thymus DNA (CT-DNA) have been investigated by UV absorption, fluorescent spectroscopy, circular dichroism spectroscopy, viscosity and cyclic voltammetry, and the modes of CT-DNA binding to the complexes have been proposed. Furthermore, DNA cleavage activities by the four complexes were performed in the presence and absence of external agents, the results indicate that their cleavage activities have been promoted in the presence of external agents. Mechanism investigation shows that the four complexes could cleave DNA through both oxidative and hydrolytic processes. In the four copper(II) complexes, complex 2 showed highest cleavage activity with the pseudo-Michaelis-Menten kinetic paraments kcat = 5.16 h−1 and Km = 3.6 × 10−5 M.  相似文献   

5.
Ruthenium complexes containing pdon (pdon = 1,10-phenanthroline-5,6-dione) were synthesized. Their spectroscopic and electrochemical properties were examined. The molecular structure with [Ru(pdon)(bpy)2](ClO4)2 ([1](ClO4)2) (bpy = 2,2′-bipyridyl) was determined by single crystal X-ray diffraction. The optically transparent thin-layer electrochemical measurements confirm that the quinone form of [1](ClO4)2 is reduced to the semi-quinone state in acetonitrile (′ = −8 mV). Comparing the model complex, [1](ClO4)2, and metal-free pdon, the positive charge on two carbon atoms of the o-quinone group is bigger than that of metal-free pdon. The assemblies of the complexes were finally examined using ligand substitution.  相似文献   

6.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

7.
Synthesis of complexes with the formulations [M(CPI)2Cl2] (M = Zn, 1; M = Cd, 4) and [M(CPI)6](X)2 (M = Zn, X = NO3, 2; X = ClO4, 3; M = Cd, X = NO3, 5; X = ClO4, 6) have been achieved from the reactions of MCl2, M(NO3)2·xH2O and M(ClO4)2·xH2O (M = Zn, Cd) with 1-(4-cyanophenyl)-imidazole (CPI). Complexes 1-6 have been characterized by elemental analyses and spectral studies (IR, 1H, 13C NMR, electronic absorption and emission). Molecular structures of 1, 2, 3 and 6 have been determined crystallographically. Weak interaction studies on the complexes revealed presence of various interesting motifs resulting from C-H···N, C-H···Cl and π-π stacking interactions. The complexes under study exhibit strong luminescence at ∼450 nm in DMSO at room temperature.  相似文献   

8.
Three water-soluble dicobalt(III) complexes, [Co2L2(µ-OH)2](ClO4)2·5H2O (1), [Co2L2(µ-OH)2](ClO4)2·CH3OH·H2O(2); [Co2L2(µ-OH)2](ClO4)2·4H2O(3) (L = 1,4,7-triazacyclononane-N-acetate monoanion), were prepared to serve as nuclease mimics. The complexes were characterized by X-ray, IR and UV-vis spectroscopy as well as ESI-MS. Three complexes exhibit similar structures, just with different solvent molecules. The electrospray mass spectrum of 1 in solution indicates that dinuclear ion [Co2L2(µ-OH)2-H+] + (4) is the active species. In the absence of any reducing agent, the complexes cleave plasmid pBR322 DNA was performed and its hydrolytic mechanism was demonstrated with radical scavengers, anaerobic reaction and T4 ligase. The kinetic aspects of DNA cleavage under pseudo- or true-Michaelis-Menten conditions are also detailed, kinetic parameters (kcat, KM) were calculated to be 3.57 h− 1, 6.92 × 10− 4 M; 0.28 h− 1, 1.9 × 10− 5 M for 4, respectively.  相似文献   

9.
In order to further understand the coordination chemistry of diazamesocyclic systems, a series of mononuclear NiII complexes with 1,4-diazacycloheptane (DACH) functionalized by additional imidazole or pyridine donor pendants, including [NiL1](ClO4)2 · H2O (1), [NiL1Cl](ClO4) (2), [NiL2Cl](ClO4) · CH3OH (3), [NiL2Cl][NiL2](ClO4)3 (4) and [NiL3](ClO4)2 (5), where L1 = 1,4-bis(N-1-methylimidazol-2-yl-methyl)-1,4-diazacycloheptane, L2 = 1,4-bis(pyridyl-2-yl-methyl)-1,4-diazacycloheptane, and L3 = 1,4-bis-(imidazol-4-yl-methyl)-1,4-diazacycloheptane, have been prepared and characterized. A detailed study on the solid structures and solution spectra of these complexes indicates that tetradentate ligands L1, L2 and L3 would lead to new NiII complexes with different coordination environments in the solid states and solution. The N-methyl substituted imidazole functionalized ligand L1 forms green compound 2 and yellow product 1; while the pyridine functionalized ligand L2 affords red product 4 and green complex 3; the ligand L3 results in only one stable mononuclear NiII product 5. The solution behaviors of these interesting compounds were also investigated by UV-Vis technique.  相似文献   

10.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

11.
Three ZnII complexes containing bispicam ligands (bispicam = bis(2-pyridylmethyl)amine), [Zn(bispicam)2](NO3)2·2CH3OH 4A, [Zn(bispicam)(NO3)2] 4B, and [Zn(bispicam)2](OTf)26, were obtained, and their structures were determined by X-ray crystallography. Complexes of the general formulation [Zn(bispicam)2]X2 (X = Cl (1), Br (2), I (3), NO3 (4A), ClO4 (5), and OTf (6)) show fac geometric isomers (a) or enantiomers (c) and (d) according to anions. Moreover, complexes 4-6 could carry out the catalytic transesterification of a range of esters with methanol under the mild conditions. Importantly, the catalyst 4B with an unsaturated structure has shown better efficiency than the catalysts, 4A, 5, and 6, having saturated structures. To explain this reactivity difference, two different reaction mechanisms have been proposed (metal-based vs. amide N-H-based).  相似文献   

12.
Reaction of [Mn(2,2′-bpy)2(OAc)](ClO4)(H2O) with a series of aromatic carboxylic acids yields new Mn(II)carboxylates [Mn(2,2′-bpy)2(L)](ClO4)}2 (1-3), [Mn(2,2′-bpy)2(L)2] (4-5) and [Mn(2,2′-bpy)2(L)(H2O)](ClO4) (6) (L = 2-aminobenzoate (2-aba) (1), 4-hydroxybenzoate (4-hba) (2), thiophene-2-carboxylate (2-tca) (3), 2-hydroxynapthoate (2-hnapa) (4), 3,5-diisopropylsalicylic acid (dipsa) (5), 2,4,6-triisopropylbenzoate (tipba) (6)). The new compounds have been characterized with the aid of elemental analysis, spectroscopy, and single-crystal X-ray diffraction studies. Compounds 1-3, which have been synthesized from less bulky carboxylic acids, are dimeric in the solid-state. Compounds 4-6, which are derived from more bulkier aromaric carboxylic acids, exist as monomeric complexes. In the case of 6, where very bulky 2,4,6-triisopropyl benzoic acid is used as the starting material, only one carboxylate ligand binds to the metal, resulting in a cationic complex. Interestingly in all the six complexes, the C-H hydrogen atoms of the 2,2′-bpy ligands are involved in extensive hydrogen bonding with the carboxylate oxygen atoms of the adjacent molecules and hence form non-covalent 1-D or 2-D aggregates in the solid state.  相似文献   

13.
Three new magnetic compounds were synthesized by using 2-(2′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NIT2Py) and tris(2-benzimidazolymethyl)amine (NTB) as ligands. The structures and magnetic properties of the complexes with formula [Ni(NIT2Py)(NTB)](ClO4)2(CH3OH) 1, [Mn(NIT2Py)(NTB)](ClO4)22 and {[Zn(NIT2Py)2(CH3OH)2](ClO4)2}{[Zn(NTB)(H2O)](ClO4)2} 3 were characterized. Compounds 1 and 2 both have [M(NIT2Py)(NTB)] structural units, where the metal ion is in an octahedral environment bound to one NIT2Py through one pyridyl nitrogen atom and one nitroxide oxygen atom. However, compound 3, the chelating zinc ion has two crystallographically independent molecules in the asymmetric unit: one is six coordinated octahedral structure [Zn(NIT2Py)2(CH3OH)2](ClO4)2, and the other one is five coordinated pyramidal structure [Zn(NTB)(H2O)](ClO4)2. The magnetic behaviors of these compounds indicate that both the nickel ion and the manganese ion are antiferromagnetically coupled with the NIT2Py ligand with a coupling constant of −19.44 and −0.37 cm−1, respectively, whereas two NIT2Py ligands in compound 3 are ferromagnetically coupled with a coupling constant of 19.1 cm−1.  相似文献   

14.
A series of flexible multidentate ligands containing N,P-donor, 2-[N-(diphenylphosphino)methyl]amino-pyridine (L1), 2-[N-bi-(diphenylphosphino) methyl]amino-pyridine (L2), 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L3) and 4-[(N-diphenylphosphino)methyl]amino-pyridine) (L4) have been synthesized. The mono- and dinuclear cyclometalated platinum(II) complexes [Pt(C^N^N)L1]ClO4 (HC^N^N = 6-phenyl-2,2′-bipyridine), [Pt2(C^N^N)2L1](ClO4)2, [Pt2(C^N^N)2L2](ClO4)2, [Pt(C^N^N)L3]ClO4 and [Pt2(C^N^N)2L4](ClO4)2 were prepared and their structures determined by X-ray crystal analysis. These complexes exhibit long-lived bright orange emissions ranging from 560 to 610 nm in the solid state at room temperature. In solution, dinuclear complexes have emissions with higher quantum yields than mononuclear complexes. This can be attributed to intramolecular interaction of free functional group with Pt(II) at axial position, resulting in the quenching of phosphorescence for platinum(II) complexes in the 3MLCT excited state.  相似文献   

15.
Reaction of [CuIIL⊂(H2O)] (H2L = N,N′-ethylenebis(3-ethoxysalicylaldimine)) with nickel(II) perchlorate in 1:1 ratio in acetone produces the trinuclear compound [(CuIIL)2NiII(H2O)2](ClO4)2 (1). On the other hand, on changing the solvent from acetone to methanol, reaction of the same reactants in same ratio produces the pentametallic compound [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)]·2MeOH (2A), which loses solvated methanol molecules immediately after its isolation to form [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)] (2B). Clearly, formation of 1 versus 2A and 2B is solvent dependent. Crystal structures of 1 and 2A have been determined. Interestingly, compound 2A is a [3 × 1 + 1 × 2] cocrystal. The cryomagnetic profiles of 1 and 2B indicate that the two pairs of copper(II)···nickel(II) ions in the trinuclear cores in both the complexes are coupled by almost identical moderate antiferromagnetic interaction (J = −22.8 cm−1 for 1 and −26.0 cm−1 for 2B).  相似文献   

16.
Three ruthenium polypyridyl compounds of structural formula [Ru(apy)(tpy)Ln](ClO4)(2−n) (apy = 2,2′-azobispyridine; tpy = 2,2′:6′,2″-terpyridine; L = Cl, H2O, CH3CN) (1a-c) were synthesized and crystallized. These complexes were fully characterized by means of 1D and 2D 1H NMR spectroscopy, as well as mass spectrometry and elemental analysis. Although in theory two isomers are possible, i.e. the one in which the central N atom in tpy is trans to the azo N in apy and the one in which the former is trans to the pyridine N in apy, in all cases only the latter was observed. The molecular structures of the compounds were elucidated by single-crystal X-ray diffraction.  相似文献   

17.
The reactions of 2,4-dimethyl-7-(2-pyridylamino)-1,8-naphthyridine (L1) with Zn(ClO4)2 · 6H2O, and bis(5,7-dimethyl-1,8-naphthyrid-2-yl)amine ligand (L2) with Zn(OAc)2 · 2H2O, ZnCl2 or Zn(ClO4)2 · 6H2O afforded four blue luminescent zinc(II) complexes, [Zn(L1)2](ClO4)2 · 2CH2Cl2 (1), [Zn(L2)(OAc)2] · CH2Cl2 (2), [Zn(L2)2][ZnCl4] · 3.5CH2Cl2 (3) and [Zn(L2)2](ClO4)2 (4), respectively. Crystal structures of complexes 1-3 have been determined by X-ray structural analyses as mononuclear complexes with pseudo-tetrahedral geometry. The crystal packing of 1 reveals the coordination cation which is self-assembled to stair chains through aromatic π-π interactions. The intermolecular N-H?O hydrogen bond in 2 generates a centrosymmetric H-bonded dimer. However, the crystal lattice of 3 shows that the molecules are linked by extensive intermolecular hydrogen bonds between the amino groups and the anions, resulting in a one-dimensional zigzag chain. Furthermore, these molecular pairs or chains were self-assembled to two-dimensional sheets or three-dimensional networks through aromatic π-π interactions. All the zinc(II) complexes display intense intraligand 1(π-π) fluorescence with λmax at 380 and 393 nm for 1, 385 and 404 nm for 2-4 in methanol at room temperature, respectively. Emission quantum yields of these complexes are in the range from 0.41 to 0.57. The broad emission bands in their solid-state emission spectra are attributed to intraligand 1(π-π) transition and aromatic π-π interactions as well.  相似文献   

18.
A linear tri-nuclear oxamato bridged copper(II) complex [Cu3(pba)(dpa)2(H2O)(ClO4)](ClO4)·H2O (1) (pbaH4 = 1,3-propanediylbis(oxamic acid), dpa = 2,2′-dipyridylamine) was isolated from the reaction mixture of Na2[Cu(pba)]·3H2O, copper perchlorate hexahydrate and dipyridylamine in methanol. On reaction with dpa or DMF in basic medium (KOH) at ambient temperature complex 1 changed to dinuclear oxalate bridged copper(II) derivatives, [Cu2(μ-C2O4)(dpa)4](ClO4)2 (2) and [Cu2(μ-C2O4)(dpa)2(DMF)2](ClO4)2 (3), respectively. The complexes 1, 2 and 3 have been characterized by physicochemical and spectroscopic tools, and also by the X-ray single crystal analysis. The hydrolysis of 1 in basic medium and thermo-gravimetric analysis has been studied. Absorption and emission spectral studies showed that complex 1 interacts with calf thymus-DNA (CT-DNA) with a binding constant (Kb) of 4.01 × 104 M−1 and linear Stern-Volmer quenching constant (Ksv) of 6.9 × 104. A strong anti-ferromagnetic interaction with a coupling constant JCuCu of 320.0 ± 0.3 cm−1 was observed from the study of magnetic behavior of complex 1 in the temperature range of 2-300 K. Electrochemical equivalency of three copper(II) ions in 1 was identified by getting only one quasi reversible cyclic voltammogram.  相似文献   

19.
Copper(II) complexes of N4-donor ligands containing imidazole moieties, 4-[bis(1-methylimidazole-2-yl-methyl)aminomethyl]imidazole (Him-im2) and 4-[bis(1-methylimidazole-2-yl-methyl)aminoethyl]imidazole (Hhis-im2), were prepared, and [Cu(Him-im2)Cl]ClO4 (1) and [Cu(Hhis-im2)Cl]ClO4 (2) were structurally characterized by the X-ray diffraction method. Complexes 1 and 2 have a mononuclear structure with a coordinated chloride ion. The geometry of the Cu(II) center in 1 was found to be 5-coordinate trigonal-bipyramidal, whereas that of 2 was square-pyramidal. Complexes 1 and 2 showed different absorption and EPR spectra in MeOH, indicating that these compounds in solution maintain the structures revealed in the solid state. On the other hand, the reaction of Him-im2 with Cu(ClO4)2 · 6H2O under basic conditions gave a tetranuclear Cu(II) complex, [Cu4(im-im2)4](ClO4)4 (3), whereas using the ligand Hhis-im2 gave two kinds of polynuclear complexes [Cu4(his-im2)4](ClO4)4 (4) and [Cu6(his-im2)6](ClO4)6 (5) exhibiting discretely different structures. X-ray crystal structure analysis of the polynuclear complexes revealed their cyclic structures bridged by the imidazolate moiety. The geometry difference of the Cu(II) centers between 1 and 2 is thus concluded to determine the structures of tetranuclear complexes 3 and 4, respectively. Temperature dependent magnetic susceptibility measurements of complexes 3, 4, and 5 have shown an antiferromagnetic exchange interaction with a coupling constant of J = −32.5, −27.1 and −22.8 cm−1, respectively.  相似文献   

20.
Pyrazole-3,5-dicarboxylate-bridged dinuclear ruthenium(II) and osmium(II) complexes of 2,2-bipyridine of composition [(bpy)2Ru(pzdc)Ru(bpy)2](ClO4) · H2O (1) and [(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2) have been obtained in high yield and have been separated to their homochiral (ΛΛ/ΔΔ) rac (1a, 2a) and heterochiral (ΛΔ/ΔΛ) meso (1b, 2b) diastereoisomers. The distinctive structural features of these diastereoisomers have been characterized by 1-D and 2-D 1H NMR spectroscopy. The X-ray crystal structure of rac-[(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2a) has been determined. The electrochemical and electronic spectral studies have established that there remain difference in properties and hence difference in intermetallic communication between the diastereoisomeric forms in each case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号