首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new homopolynuclear complexes with azido bridges have been obtained by using [Cu(AA)(BB)]+ building-blocks (AA = acetylacetonate; BB = 1,10-phenanthroline or 2,2′-bipyridine). The reaction between [Cu(acac)(phen)(H2O)](ClO4) and NaN3 leads to a mixture of two compounds: a binuclear complex, [{Cu(acac)(phen)}21,3-N3)](ClO4) · 2H2O (1), and a linear tetranuclear one, [{Cu(acac)(phen)(ClO4)}2{Cu(phen)(μ1,1-N3)2}2] (2). The reaction between [Cu(acac)(bipy)(H2O)](ClO4) and NaN3 affords also a mixture of two compounds: [{Cu(acac)(bipy)}21,3-N3)]3(ClO4)3 · 3.75H2O (3) and [Cu(acac)(bipy)(N3)][Cu(acac)(bipy)(H2O)](ClO4) (4). The X-ray crystal structures of compounds 1-4 have been solved (for compound 4 the crystal structure was previously reported). In compounds 1 and 3, two {Cu(AA)(BB)} fragments are bridged by the azido anion in an end-to-end fashion. Two isomers, cis and trans with respect to azido bridge, were found in crystal 3. The structure of compound 2 consists of two Cu(II) central cations bridged by two μ1,1-azido ligands, each of them being also connected to a {Cu(acac)(phen)} fragment through another μ1,1-azido ligand. The cryomagnetic properties of the compounds 1 and 2 have been investigated and discussed. The magnetic behaviour of compound 1 shows the absence of any interactions between the metallic ions. In the tetranuclear complex 2, the magnetic interactions between the external and central copper(II) ions(J1), and between the central metallic ions (J2) were found ferromagnetic (J1 = 0.36 cm−1, J2 = 7.20 cm−1).  相似文献   

2.
A new convenient synthesis and the crystallographic characterization of [Ir(acac)(coe)2] (2, acac = acetylacetonato; coe = cis-cyclooctene) are described. The title compound crystallized from THF/ethanol in two modifications (monoclinic P21/c, 2a, and triclinic , 2b). Complex 2 represents an efficient starting material in the synthesis of mononuclear iridium(III) complexes containing cyclometalated 2-phenylpyridinato ligands using oxidative addition reactions of the corresponding ligands towards 2. Thus [Ir(acac)(ppy)2] (3, ppy = 2-phenylpyridinato) and [Ir(ppy)3] (4) (mer, 4a; fac, 4b) were prepared in excellent yields and short reaction times in a kind of one-pot procedure starting from [{Ir(μ-Cl)(coe)2}2] (1). Furthermore a convenient synthesis of [{Ir(μ-Cl)(ppy)2}2] (5) from 1 and Hppy is described.  相似文献   

3.
The reactions of 4-(p-dimethylaminophenyl)-6-phenyl-2,2′-bipyridine (HL) with three metal salts of platinum(II), copper(I) and zinc(II) provide the new complexes [Pt(L)(PPh3)]ClO4 (1), [Cu(HL)2]BF4 (2), [Cu(HL)(PPh3)]BF4 (3) and [Zn(HL)2](ClO4)2 (4). All the structures of these four complexes have been characterized by single crystal X-ray diffraction, and their spectroscopic properties were investigated. Especially for complex 1, upon protonation, the excited state can be tuned from the intraligand charge transfer (ILCT) to the metal-to-ligand charge transfer (MLCT), and such switching in the excited state is acid/base reversible. The time-dependent density functional theory (TD-DFT) calculation was used to interpret the absorption spectra of complex 1, and the calculated result is consistent with those of experiments results. In contrast with 1, the lowest energy absorption at 410-650 nm of complexes 2 and 3 can be assigned to MLCT excited state. In solid state or solution complex 4 exhibits intense photoluminescence attributed to a ILCT transition in nature.  相似文献   

4.
Four new dinuclear Mn(III) compounds have been synthesised: [{Mn(bpy)(H2O)}2(μ-4-ClC6H4COO)2(μ-O)}](ClO4)2 (1), [{Mn(EtOH)(phen)}2(μ-O)(μ-4-ClC6H4COO)2](ClO4)2 (2), [{Mn(bpy)(EtOH)}(μ-4-BrC6H4COO)2(μ-O){Mn(bpy)(ClO4)](ClO4) (3) and [{Mn(H2O)(phen)}2(μ-4-BrC6H4COO)2(μ-O)](ClO4)2 (4). The crystal structures of 2 and 3 are evidence for the tendency of the ethanol and the perchlorate to act as ligands. Due to the coordination of these groups, the environment of the manganese ions is elongated in the monodentate ligand direction, and this distortion is more important when this ligand is the perchlorate. The magnetic properties of the four compounds have been analysed: compounds 1, 3 and 4 show antiferromagnetic behaviour, with J = −6.33 cm−1 for 1, J = −6.76 cm−1 for 3 and J = −3.08 cm−1 for 4 (H = −JS1·S2), while compound 2 shows a very weak ferromagnetic coupling. For this compound, at low temperature the most important effect on the χMT data is the zero-field splitting of the ion, and the best fit was obtained with |DMn| = 2.38 cm−1 and |EMn| = 0.22 cm−1.  相似文献   

5.
The dinuclear and trinuclear copper(II) complexes [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 · [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1) and [Cu3(L)2(OH)2(H2O)2](NO3)2 (2) (HL=2-[2-(α-pyridyl)ethyl]imino-3-butanone oxime and phen=1,10-phenanthroline) were prepared and their crystal structures have been determined by X-ray crystallography. Complex 1 is composed of [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 (1a) and [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1b). In 1a and 1b, one oximato of L and one hydroxo group bridge two copper(II) ions. The linear trinuclear cation [Cu3(L)2(OH)2(H2O)2]2+ in 2 is centrosymmetric, and one oximato and one hydroxo group bridge the central and terminal copper(II) ions. The strong antiferromagnetic interactions within the dinuclear and trinuclear complexes 1 and 2 have been observed (2J=∼−900 cm−1 for 1 and 2, respectively, H=−2JS1·S2).  相似文献   

6.
Four new coordination complexes, NiII(L)2 (1), [CoIII(L)2]ClO4 (2), [Zn(HL)(L)]ClO4 · H2O (3) and [Zn(L)2][Zn(L)(HL)]ClO4 · 7H2O (4) (where L is a monoanion of a Schiff base ligand, N′-[(2-pyridyl)methylene]salicyloylhydrazone (HL) with NNO tridentate donor set), have been synthesised and systematically characterised by elemental analysis, spectroscopic studies and room temperature magnetic susceptibility measurements. Single crystal X-ray diffraction analysis reveals that 1 is a neutral complex, while 2-4 are cationic complexes. Among them, 4 is a rare type of cationic complex with two molecules in the asymmetric unit. The ligand chelates the metal centre with two nitrogen atoms from the pyridine and imino moieties and one oxygen atom coming from its enolic counterpart. All the reported complexes show distorted octahedral geometry around the metal centres, with the two metal-N (imino) bonds being significantly shorter than the two metal-N (Py) bonds.  相似文献   

7.
A novel series of copper(II) complexes of formula [Cu(tren)(mpda)](ClO4)2 · 1/2H2O (1), [Cu2(tren)2(mpda)](ClO4)4 · 2H2O (2), and [Cu2(tren)2(ppda)](ClO4)4 · 2H2O (3) containing the tetradentate tris(2-aminoethyl)amine (tren) terminal ligand and the potentially bridging 1,n-phenylenediamine [n = 3 (mpda) and 4 (ppda)] ligand have been prepared and spectroscopically characterized. X-ray diffraction on single crystals of 1 and 3 show the presence of mono- (1) and dinuclear (3) copper(II) units where the mpda (1) and ppda (3) ligands adopt terminal monodentate (1) and bridging bis(monodentate) (3) coordination modes toward [Cu(tren)]2+ cations with an overall non-planar, orthogonal disposition of the phenylene group and the N-Cu-N threefold axis of the trigonal bipyramid of each copper(II) ion [values of the Cu-N-C-C torsion angle (?) in the range of 50.8(3)-79.2(2) (1) and 80.9(2)-86.5(2)° (3)]. Variable-temperature magnetic susceptibility measurements on the dinuclear complexes 2 and 3 show the occurrence of moderate ferromagnetic (J = +8.3 cm−1, 2) and strong antiferromagnetic (J = −51.4 cm−1, 3) couplings between the two copper(II) ions across the meta- and para-phenylenediamine bridges, leading to S = 1 (2) and S = 0 (3) ground spin states [H = −JS1 · S2 with S1 = S2 = SCu = 1/2]. Density functional theory (DFT) calculations on the triplet (2) and broken-symmetry (BS) singlet (3) ground spin states, support the occurrence of a spin polarization mechanism for the propagation of the exchange interaction through the predominantly π-type orbital pathway of the 1,n-phenylenediamine bridge. Finally, a new magneto-structural correlation between the magnitude of the magnetic coupling (J) and the Cu-N-C-C torsion angle (?) has been found which reveals the role of σ- versus π-type orbital pathways in the modulation of the magnetic coupling for m- and p-phenylenediamine-bridged dicopper(II) complexes.  相似文献   

8.
The reaction of aqueous solutions of the preformed 1:1 Cu(ClO4)2-polydentate amine with tetrasodium 1,2,4,5-benzene tetracarboxylate (Na4bta) afforded three different types of polynuclear compounds. These include the tetranuclear complexes: [Cu4(Medpt)44-bta)(ClO4)2(H2O)2](ClO4)2·2H2O (1), [Cu4(pmdien)44-bta)(H2O)4](ClO4)4 (2), [Cu4(Mepea)44-bta)(H2O)2](ClO4)4(3), [Cu4(TPA)44-bta)](ClO4)4·10H2O (4) and [Cu4(tepa)44-bta)](ClO4)4·2H2O (5), the di-nuclear: [Cu2(DPA)22-bta)(H2O)2]·4H2O (6), [Cu2(dppa)22-bta)(H2O)2]·4H2O (7) and [Cu2(pmea)22-bta)]·14H2O (8) and the trinuclear complex [Cu3(dppa)33-bta)(H2O)2.25](ClO4)2·6.5H2O (9) where Medpt = 3,3′-diamino-N-methyldipropylamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, Mepea = [2-(2-pyridyl)ethyl]-(2-pyridylmethyl)methylamine, TPA = tris(2-pyridylmethyl)amine, tepa = tris[2-(2-pyridyl)ethyl)]amine, DPA = di(2-pyridymethyl)amine, dppa = N-propanamide-bis(2-pyridylmethyl)amine and pmea = bis(2-pyridylmethyl)-[2-(2-pyridylethyl)]amine. The complexes were structurally characterized by elemental analyses, spectroscopic techniques, and by X-ray crystallography for complexes 1, 2, 4, 6, 7 and 9. X-ray structure of the complexes reveal that bta4− is acting as a bridging ligand via its four deprotonated caboxylate groups in 1, 2 and 4, three carboxylate groups in 9 and via two trans-carboxylates in 6 and 7. The complexes exhibit extended supramolecular networks with different dimensionality: 1-D in 2 and 4 due to hydrogen bonds of the type O-H···O, 2-D in 1 and 7, and 3-D network in 6 as a result of hydrogen bonds of the types N-H···O and O-H···O. Magnetic susceptibility measurements showed very weak antiferromagnetic coupling between the CuII ions in 1-5, 7-9 (|J| = 0.02-0.87 cm−1) and weak ferromagnetic coupling for 6 (= 0.08 cm−1).  相似文献   

9.
The synthesis of bis-cyclometalated aminocarboxylato complexes [M(α-aminocarboxylato)(ptpy)2] (M = Rh, 3, 4, 5; M = Ir, 6, 7, 8), ptpy = 2-(p-tolyl)pyridinato; aminocarboxylato = glycinato, l-alaninato, l-prolinato) from [{M(μ-Cl)(ptpy)2}2] (M = Rh, 1; M = Ir, 2) is described. The molecular structure of [Ir(l-alaninato)(ptpy)2] (7) was confirmed by a single-crystal X-ray diffraction study. Compound 7 crystallized from methanol-iso-hexane in the space group P21. For 7 the two diastereoisomers ΔIr, SC and ΛIr, SC were found crystallizing twice per unit. Absorption and emission spectra were recorded. The rhodium compounds are weak yellow-green and the iridium species strong green emitters.  相似文献   

10.
The synthesis and characterization of several complexes of the composition [{M(terpy)}n(L)](ClO4)m (M = Pt, Pd; L = 1-methylimidazole, 1-methyltetrazole, 1-methyltetrazolate; terpy = 2,2′:6′,2″-terpyridine; n = 1, 2; m = 1, 2, 3) is reported and their applicability in terms of a metal-mediated base pair investigated. Reaction of [M(terpy)(H2O)]2+ with 1-methylimidazole leads to [M(terpy)(1-methylimidazole)](ClO4)2 (1: M = Pt; 2: M = Pd). The analogous reaction of [Pt(terpy)(H2O)]2+ with 1-methyltetrazole leads to the organometallic compound [Pt(terpy)(1-methyltetrazolate)]ClO4 (3) in which the aromatic tetrazole proton has been substituted by the platinum moiety. For both platinum(II) and palladium(II), doubly metalated complexes [{M(terpy)}2(1-methyltetrazolate)](ClO4)3 (4: M = Pt; 5: M = Pd) can also be obtained depending on the reaction conditions. In the latter two compounds, the [M(terpy)]2+ moieties are coordinated via C5 and N4. X-ray crystal structures of 1, 2, and 3 are reported. In addition, DFT calculations have been carried out to determine the energy difference between fully planar [Pd(mterpy)(L)]2+ complexes Ip-IVp (mterpy = 4′-methyl-2,2′:6′,2″-terpyridine; L = 1-methylimidazole-N3 (I), 1-methyl-1,2,4-triazole-N4 (II), 1-methyltetrazole-N3 (III), or 3-methylpyridine-N1 (IV)) and the respective geometry-optimized structures Io-IVo. Whereas this energy difference is larger than 70 kJ mol−1 for compounds I, II, and IV, it amounts to only 0.8 kJ mol−1 for the tetrazole-containing complex III, which is stabilized by two intramolecular C-H?N hydrogen bonds. Of all complexes under investigation, only the terpyridine-metal ion-tetrazole system with N3-coordinated tetrazole appears to be suited for an application in terms of a metal-mediated base pair in a metal-modified oligonucleotide.  相似文献   

11.
In view of the wide applicability and versatility of titanium based Lewis acids in selective organic synthesis including asymmetric synthesis, we have synthesized a family of mono and polyatomic titanium derivatives. The polymetallic complexes prepared are bridged by pyridimine, quinone and triazine based ligands. The synthesis of [{Ti(O-i-Pr)3(Oddbf)}2] (1), [Ti(O-i-Pr)2(Oddbf)2] (2), [{Ti(O-i-Pr)2(Oddbf)(OMent)}2] (3) (ddbfO = 2,3-dihydro-2,2-dimethyl-benzofuranoxo; MentO = (1R,2S,5R)-(−)-menthoxo), [{Ti(O-i-Pr)3(OMenpy)}2] (4), [Ti(O-i-Pr)2(OMenpy)2] (5) (MenpyO = (1S,2S,5R)-(−)-menthoxo-pyridine); [{(Ti(OR)3)2L}n] (RO = isopropoxo, (1R,2S,5R)-(−)-menthoxo) (6-11) and [{(Ti(O-i-Pr)3)3L}n] (12) was accomplished from a Lewis acid such as Ti(O-i-Pr)4, [{Ti(O-i-Pr)3(OMent)}2] or [Ti(OMent)4] and chelating ligands (ddbfOH = 2,3-dihydro-2,2-dimethyl-benzofuranol; MenpyOH = (1R,2S,5R)-(−)-5-methyl-2-isopropyl-1-(2′-pyridinyl)cyclohexan-1-ol; LH2 = 4,6-dihydroxy-2,5-diphenyl-pyrimidine, 2,4-dihydroxy-5,6-dimethyl-pyrimidine, 5,8-dihydroxy-1,4-napthoquinone, 2,5-dihydroxy-1,4-benzoquinone and LH3 = cyanuric acid) that provide a rigid framework for the metal centre. The molecular structure of 5 has been determined by single crystal X-ray diffraction studies.  相似文献   

12.
Bin Hu 《Inorganica chimica acta》2010,363(7):1348-6199
Four transition metal complexes of 3,8-di(thiophen-2′,2″-yl)-1,10-phenanthroline (dtphen), formulated as [Ni(dtphen)2(H2O)2]·(ClO4)2 (1), [Zn(dtphen)2(H2O)]·(ClO4)2 (2) [Cu(dtphen)2(H2O)]·(ClO4)2 (3), [Cu(dtphen)(phen)2]·(ClO4)2 (4) (phen = 1,10-phenanthroline) with different metal-to-ligand ratios, were synthesized and characterized herein. The X-ray single-crystal diffraction studies of 1-4 exhibit that different molecular configurations for the dtphen ligand can be observed where the side thiophene rings adopt the trans/trans, trans/cis, trans/disorder and cis/cis conformations relative to the central 1,10-phenanthroline unit in different compounds. Fluorescence emission spectra of 1-4 in methanol show that the fluorescence emission of 2 is much stronger than the other three metal complexes, which is mainly due to its full d10 electronic configuration of Zn(II) ion.  相似文献   

13.
The heterotrimetallic complex, [{LCuMn(H2O)}{Cr(phen)(C2O4)2}](ClO4) · H2O (1), has been obtained by assembling heterobinuclear cations, [LCuMn]2+, with [Cr(phen)(C2O4)2] ions (H2L is the compartmental Schiff-base resulting from the stepwise condensation of 2,6-diformyl-p-cresol with ethylenediamine and diethylenetriamine). The copper(II) and manganese(II) ions are hosted into the compartments of the macrocyclic ligand. [Cr(phen)(C2O4)2] acts as a ligand, being coordinated through one oxalato oxygen atom to the apical position of the square pyramidal copper(II) ion. The cryomagnetic investigation of 1 reveals an antiferromagnetic interaction between CuII and MnII within the compartmental ligand (J = −39 cm−1). The interaction between CuII and CrIII across the oxalato bridge is negligible. The crystal structure of [LCuPb](ClO4)2 · H2O, a useful precursor in obtaining 3d-3d′ complexes, is also reported.  相似文献   

14.
Two dinuclear spin-coupled divalent cobalt complexes, [Co2(P1-O)(μ2-OAc)](ClO4)2, (1) and [Co2(P1-O)(μ2-BNPP)](ClO4)2, (2) containing μ-1,3 acetate (OAc) and bis(4-nitrophenyl)phosphate (BNPP) auxiliary bridges, respectively, were synthesized by the reaction of a classic dinucleating ligand, P1-OH with cobalt(II) perchlorate in presence of acetic acid/bis(4-nitrophenyl)phosphate. They were characterized by single crystal X-ray diffraction, to show a trigonal bipyramidal geometry around each cobalt center and the intervening bridging atoms that are responsible for spin-transfer between the two divalent cobalt centers; the alkoxo oxygen donor occupies an equatorial position, and the auxiliary ligand oxygens (OAc/BNPP) occupy the axial positions. Solution state magnetic moment measurement together with UV-Vis/NIR spectra revealed a high-spin ground state (S = 3/2) for Co(II) in these compounds. Complexes 1 and 2 show interesting 1H NMR spectral features of resonances with relatively narrower linewidths in conjunction with a sizable chemical shift dispersion of −5 and 265 ppm. Complex 2 containing the bis(4-nitrophenyl)phosphate auxiliary bridge showed narrower spectral window than complex 1 that has the acetate auxiliary bridge.  相似文献   

15.
A new family of mononuclear Zn(II) complexes [Zn(Pyimpy)2](ClO4)2 (1), [Zn(Pyimpy)(Cl)2] (2), [Zn(Pyimpy)(SCN)2] (3) and [Zn(Pyimpy)(N3)2] (4) were synthesized using designed tridentate ligand Pyimpy having NNN donors (Pyimpy: (2-((2-phenyl-2-(pyridin-2-l)hydazono)methyl)pyridine)). Complexes were characterized by different spectroscopic studies and it has been found out that all complexes exhibited strong fluorescent emission at room temperature. Molecular structures of [Zn(Pyimpy)2](ClO4)2·C6H5CH3·0.5H2O (1·C6H5CH3·0.5H2O) and [Zn(Pyimpy)(Cl)2]·CH3CN (2·CH3CN) were determined by X-ray crystallography and ligand coordinated Zn(II) ions was described as distorted octahedral and distorted square pyramidal, respectively. DNA binding properties of these complexes were investigated by absorption spectral, fluorescence quenching and circular dichroism spectral studies.  相似文献   

16.
Three ZnII complexes containing bispicam ligands (bispicam = bis(2-pyridylmethyl)amine), [Zn(bispicam)2](NO3)2·2CH3OH 4A, [Zn(bispicam)(NO3)2] 4B, and [Zn(bispicam)2](OTf)26, were obtained, and their structures were determined by X-ray crystallography. Complexes of the general formulation [Zn(bispicam)2]X2 (X = Cl (1), Br (2), I (3), NO3 (4A), ClO4 (5), and OTf (6)) show fac geometric isomers (a) or enantiomers (c) and (d) according to anions. Moreover, complexes 4-6 could carry out the catalytic transesterification of a range of esters with methanol under the mild conditions. Importantly, the catalyst 4B with an unsaturated structure has shown better efficiency than the catalysts, 4A, 5, and 6, having saturated structures. To explain this reactivity difference, two different reaction mechanisms have been proposed (metal-based vs. amide N-H-based).  相似文献   

17.
A series of dinickel acetato complexes [LNi2(OAc)(solvent)x](ClO4)2 (1-3, 5) as well as related complexes [LNi2(OAc)2](OAc) (4) and [LNi2(OAc)(NO3)2] (6), all derived from three pyrazolate-based binucleating ligands, have been prepared and characterized by X-ray crystallography. The solid state structures reveal different acetate binding modes (μ1,3-bridging and bidentate chelating) plus severe twisting and tilting of the μ1,3-acetate bridges with respect to their bimetallic scaffolds, reflecting the great flexibility of carboxylate coordination. Magnetic properties of all six complexes have been investigated, and the strength of antiferromagnetic coupling is discussed in the light of the structural differences, suggesting a magnetostructural correlation for acetato-bridged complexes.  相似文献   

18.
New complexes of formulae [Cu(HL2)(H2O)(NO3)](NO3) (1), [{Cu(L1)(tfa)}2] (2), [{Cu(L1)}2(pz)](ClO4)2 (3) and {[{Cu(L1)}2(dca)](ClO4)}n (4), where HL1 = pyridine-2-carbaldehyde thiosemicarbazone, HL2 = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa = trifluoroacetic acid (CF3COOH), pz = pyrazine (C4H4N2) and dca = dicyanamide [N(CN)2], have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers’ equation for copper(II) dimers derived from H = -2JS1S2 being the obtained J/k values −4.8, −4.3 and −5.1 K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL1)(tfa)}2](tfa)2 compound has been also measured for the first time. The J/k value is -0.3 K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.  相似文献   

19.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

20.
Five novel complexes with two pyridine substituted benzotriazole ligands, 1-(2-pyridyl)benzotriazole (L1) and 1-(4-pyridyl)benzotriazole (L2), [Zn(L1)2Cl2] (1), [{Zn(L1)2Cl2}·(L1)2] (2), [Zn(L2)2Cl2] (3), [{Zn(L2)(H2O)3(μ2-SO4)}·H2O] (4), and [{Cd(L2)(H2O)3(μ2-SO4)}·H2O] (5) were synthesized. The details of the structures were characterized by X-ray single crystal analysis, revealing that these complexes were assembled together via supramolecular interaction, such as, hydrogen bonding and π-π interactions. The influence of organic ligands, anions and reaction conditions in the formation of the complexes were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号