首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of [(p-cymene)RuCl2(PPh3)] (1) or [CpMCl2(PPh3)] (Cp = C5Me5) (3a: M = Rh; 4a: M = Ir) with 1-alkynes and PPh3 were carried out in the presence of KPF6, generating the corresponding alkenyl-phosphonio complexes, [(p-cymene)RuCl(PPh3){CHCR(PPh3)}](PF6) (2a: R = Ph; 2b: R = p-tolyl) or [CpMCl(PPh3){CHCPh(PPh3)}](PF6) (5: M = Rh; 6: M = Ir). Similar reactions of complexes [CpRhCl2(L1)] (3a: L1 = PPh3; 3c: L1 = P(OMe)3) with L2 (L2 = PPh3, PMePh2, P(OMe)3) gave [CpRhCl(L1)(L2)](PF6) (7bb: L1 = L2 = PMePh2; 7ca: L1 = P(OMe)3, L2 = PPh3; 7cc: L1 = L2 = P(OMe)3). Alkenyl-phosphonio complex 5 was treated with P(OMe)3 or 2,6-xylyl isocyanide, affording [CpRhCl(L){CHCPh(PPh3)}](PF6) (8a: L = P(OMe)3; 8b: L = 2,6-xylNC). X-ray structural analyses of 2a, 6 and 8a revealed that the phosphonium moiety bonded to the Cβ atom of the alkenyl group are E configuration.  相似文献   

2.
Synthesis of complexes with the formulations [M(CPI)2Cl2] (M = Zn, 1; M = Cd, 4) and [M(CPI)6](X)2 (M = Zn, X = NO3, 2; X = ClO4, 3; M = Cd, X = NO3, 5; X = ClO4, 6) have been achieved from the reactions of MCl2, M(NO3)2·xH2O and M(ClO4)2·xH2O (M = Zn, Cd) with 1-(4-cyanophenyl)-imidazole (CPI). Complexes 1-6 have been characterized by elemental analyses and spectral studies (IR, 1H, 13C NMR, electronic absorption and emission). Molecular structures of 1, 2, 3 and 6 have been determined crystallographically. Weak interaction studies on the complexes revealed presence of various interesting motifs resulting from C-H···N, C-H···Cl and π-π stacking interactions. The complexes under study exhibit strong luminescence at ∼450 nm in DMSO at room temperature.  相似文献   

3.
The new diiron alkynyl methoxy carbene complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CCR′}(Cp)2]+ (R = 2,6-Me2C6H3 (Xyl), R′ = Tol, 3a; R = Xyl, R′ = Ph, 3b; R = Xyl, R′=Bun, 3c; R = Xyl, R′=SiMe3, 3d; R = Me, R′ = Tol, 3e; R = Me, R′ = Ph, 3f) are obtained in two steps by addition of R′CCLi (R′ = Tol, Ph, Bun, SiMe3) to the carbonyl aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2]+ (R = Xyl, 1a; Me, 1b), followed by methylation of the resulting alkynyl acyl compounds [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(O)CCR′}(Cp)2] (R = Xyl, R′ = Tol, 2a; R = Xyl, R′ = Ph, 2b; R = Xyl, R′ = Bun, 2c; R = Xyl, R′ = SiMe3, 2d; R = Me, R′ = Tol, 2e; R = Me, R′ = Ph, 2f). Complexes 3 react with secondary amines (i.e., Me2NH, C5H10NH) to give the 4-amino-1-metalla-1,3-dienes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CHC(R′)(NMe2)}(Cp)2]+ (R = Xyl, R′ = Tol, 4a; R = Xyl, R′ = Ph, 4b; R = Me, R′ = Ph, 4c) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(Tol)(NC5H10)}(Cp)2]+, 5. The addition occurs stereo-selectively affording only the E-configured products. Analogously, addition of primary amines R′NH2 (R′ = Ph, Et, Pri) affords the 4-(NH-amino)-1-metalla-1,3-diene complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(R)(NHR′)}(Cp)2]+ (R = Ph, 6a; Et, 6b; Pri, 6c). In the case of 6a, only the E isomer is formed, whereas a mixture of the E and Z isomers is present in the case of 6b,c, with prevalence of the latter. Moreover, the two isomeric forms exist under dynamic equilibrium conditions, as shown by VT NMR studies. Complexes 6 are deprotonated by strong bases (e.g., NaH) resulting in the formation of the neutral vinyl imine complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(NR)(Tol)}(Cp)2] (R = Ph, 7a; Et, 7b; Pri, 7c); the reaction can be reverted by addition of strong acids. X-ray crystal structures have been determined for 3a[CF3SO3] · Et2O, 4c[CF3SO3], 6a[BF4] · CH2Cl2, 6c[CF3SO3] · 0.5Et2O and 7a · CH2Cl2.  相似文献   

4.
It was found that the lanthanide diiodides LnI2 (1) (Ln = Nd, Sm, Eu, Dy, Tm, Yb) are dissolved in isopropylamine (IPA) without redox transformations. Stability of the formed solutions decreases in a row Eu ≈ Yb > Sm > Tm > Dy > Nd. Removing of a solvent in vacuum leaves complexes LnI2(IPA)x (2) (Nd, x = 5; Sm, Eu, Dy, Tm, Yb, x = 4) as crystalline colored solids. Stability of 2-Nd,Dy,Tm is higher than that of known THF or DME coordinated salts. Divalent state of metal in the products is confirmed by data of UV-Vis spectroscopy, magnetic measurements and their chemical behavior. Structure of 2-Eu and 2-Tm was established by X-ray diffraction analysis. Oxidation of 2-Nd,Dy in IPA affords amine-amides (PriNH)Ln(IPA)y (3) (Nd, y = 4; Dy, x = 3). n-Propylamine also dissolves the iodides 1-Sm,Eu,Dy,Tm,Yb but stability of the solutions is significantly lower. 1-Nd vigorously reacts with PrnNH2 even at −30 °C which hampers the formation of the solution.  相似文献   

5.
By changing the substituents on 1,2,4-triazole ring, six novel organic-inorganic hybrid complexes constructed from tetranuclear copper(I) 1,2,4-triazolate clusters and octamolybdates, [{Cu4(L)x}Mo8O26] (L = 3,5-diamino-1,2,4-triazole (datrz) and x = 4 for 1; L = 3-amino-1,2,4-triazole (3atrz) and x = 4 for 2; L = 3,5-dimethyl-1,2,4-triazole (dmtrz) and x = 4 for 3; L = 3,5-dimethyl-4-amino-1,2,4-triazole (dmatrz) and x = 6 for 4; L = 3,5-diethyl-4-amino-1,2,4-triazole (deatrz) and x = 4 for 5; L = 3,5-di(n-propyl)-4-amino-1,2,4-triazole (dpatrz) and x = 3 for 6), were obtained. The tetranuclear Cu(I) cluster in compound 1 acts as charge-compensating unit, which is the first polynuclear metal 1,2,4-triazole structure only with N1, N2 bridging mode. Compounds 2, 4, 5 and 6 are of polymeric 1D chains and 3 is of a 2D layer structure. In 2, three distinct Cu(I)-coordination geometries, distorted tetrahedral, T-shaped and V-shaped linear Cu(I), are observed in the same structure. The first extended hybrid structure constructed by δ-octamolybdates is founded in 4. A novel [Mo8O26]4− anion is found in 5, which contains only three crystallographically independent Mo atoms. In compounds 5 and 6, terminal oxo groups of octamolybdate cluster act as μ3-oxo bridges to link the copper(I) coordination complexes; such an unusual linking manner is unique in the coordination chemistry of octamolybdates with transition metal fragments. The influences of substituent on the structures of the tetranuclear units are also discussed in details.  相似文献   

6.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

7.
Acetonitrile is easily displaced from [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (R = 2,6-Me2C6H3 (Xyl) (1a); Me (1b)) upon stirring in THF at room temperature in the presence of [NBu4][SCN]. The resulting complexes trans-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (trans-2a); Me (trans-2b)) are completely isomerised to cis-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (cis-2a); Me (cis-2b)) when heated at reflux temperature. Similarly, the complexes cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(NCO)(Cp)2] (M = Fe, R = Me (4a); M = Ru, R = Xyl (4b); M = Ru, R = Me (4c)) and cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(N3)(Cp)2] (M = Fe, R = Xyl (5a); M = Fe, R = Me (5b); M = Ru, R = Xyl (5c)) can be obtained by heating at reflux temperature a THF solution of [M2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (M = Fe, R = Xyl (1a); M = Fe, Me (1b); M = Ru, R = Xyl (1c); M = Ru, R = Me (1d)) in the presence of NaNCO and NaN3, respectively. The reactions of 5 with MeO2CCCCO2Me, HCCCO2Me and (NC)(H)CC(H)(CN) afford the triazolato complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3C2(CO2Me)2}(Cp)2] (M = Fe, R = Xyl (6a); M = Fe, R = Me (6b); M = Ru, R = Xyl (6c)), [M2{μ-CN(Me)(R)}(μ- CO)(CO){N3C2(H)(CO2Me)}(Cp)2] (M = Fe, R = Me (7a); M = Ru, R = Xyl (7b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3C2(H)(CN)}(Cp)2] (8), respectively. The asymmetrically substituted triazolato complexes 7-8 are obtained as mixtures of N(1) and N(2) bonded isomers, whereas 6 exists only in the N(2) form. Methylation of 6-8 results in the formation of the triazole complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(CO2Me)2}(Cp)2][CF3SO3] (9), [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3(Me)C2(H)(CO2Me)}(Cp)2][CF3SO3] (M = Fe, R = Me (10a); M = Ru, R = Xyl (10b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(H)(CN)}(Cp)2][CF3SO3], 11. The crystal structures of trans-2b, 4b · CH2Cl2, 5a, 6b · 0.5CH2Cl2 and 8 · CH2Cl2 have been determined.  相似文献   

8.
Binuclear titanocene complexes [Cp2Ti(tcm)]2O (4), [Cp2Ti(dca)]2O (5) and [Cp2Ti(dcnm)]2O (6) (tcm = tricyanomethanide, dca = dicyanamide and dcnm = dicyanonitrosomethanide) were synthesized in moderate yields by the reaction of Cp2TiCl2 (1) with respective alkali metal pseudohalide salts in the aqueous solution. When the reaction was carried out in dry organic solvents, mononuclear compounds Cp2Ti(tcm)2 (2) and Cp2Ti(dca)2 (3) were isolated. Preparation of dipseudohalide complex Cp2Ti(dcnm)2 by this manner was unsuccessful due to decomposition of dcnm ligand resulting in formation of oxygen-bridged compound 6. All prepared compounds were characterized by elemental analysis, NMR, Raman, infrared and UV-Vis spectroscopy. Molecular structures of 2, 4 and 6 (two polymorphs) have been determined by single-crystal X-ray diffraction analysis.  相似文献   

9.
Titration curves were measured for three molybdocene dimers, [Cp2Mo(μ-OH)]2[OTs]2 (4), [Mo(μ-OH)]2[OTs]2 (4′; Cp′ = C5H4CH3), and ansa-[C2Me4Cp2Mo(μ-OH)]2[OTs]2 (4a), and for two monomeric molybdocene complexes, Cp2MoO (6) and Cp2MoCl2 (1). The titration curves for 4, 6, and 1 were identical and showed three equivalence points each. The titration curve for 4′ was also similar in appearance but the equivalence points were shifted higher by ∼0.3, as expected for the more electron-rich Mo center in this molecule. The titration curve for the ansa-[C2Me4Cp2Mo(μ-OH)]2[OTs]2 complex showed only two equivalence points. Two of the equivalence points observed in the titration of 4, 6, and 1 were previously reported in potentiometric measurements of aqueous solutions of Cp2MoCl2 and were attributed to the Cp2Mo(OH2)2+ species (pKa = 5.5 ± 0.1 and 8.3 ± 0.2). The third equivalence point (pKa = 2.2 ± 0.2) is assigned to protonation/deprotonation of the [Cp2Mo(μ-OH)]2[OTs]2/[Cp2Mo(μ-OH2)(μ-OH)MoCp2]3+ dimer. A new equilibrium scheme is proposed for the aquated molybdocenes to provide a more complete picture of the aqueous speciation of the non-ansa molybdocene complexes, specifically by accounting for the third acidic proton in the titration curves and by describing the hydrolysis of Cp2MoO. Although the titration curve of the ansa-[C2Me4Cp2Mo(μ-OH)]2[OTs]2 complex is different from that of [Cp2Mo(μ-OH)]2[OTs]2, 1H NMR data suggest that the aqueous speciation of the ansa-[C2Me4Cp2Mo(μ-OH)]2[OTs]2 complex is analogous to that of the non-ansa molybdocenes.  相似文献   

10.
The reaction of M(NO3)2·xH2O (M = Cu, Ni and Co; x = 3 for Cu and x = 6 for Co/Ni), imidazole (Im) and sodium dicyanamide (dca) afforded the complexes [M(Im)2(dca)2] (where M = Cu for 1, M = Ni for 2, and M = Co for 3). All of them have been characterized structurally by single crystal X-ray diffraction measurements. X-ray analysis reveals that the dicyanamido ligand features the μ1,3 bridging mode that led to the formation of two-dimensional structure of complex 1 while complexes 2 and 3 attribute an infinite one-dimensional chain like structure to generate the fascinating molecular assemblies. The {N(CN)2} ligands present in the complexes 2 and 3 are coordinated in end-to-end (μ1,5) fashion. All the complexes have distorted octahedral geometry around the central metal ion and coordinated by two amine nitrogen atoms from imidazole ligands and four nitrogen atoms from dca ligands. The variable temperature (2-300 K) magnetic susceptibility measurements showed that the magnetic interaction between the metal centers in the complex 1 is dominantly ferromagnetic while the metal ions in complex 3 are antiferromagnetically coupled. On the contrary, complex 2 is a simple paramagnet. The results of magnetic model are in good agreement with the experimental data.  相似文献   

11.
A metathesis reaction of [CpMCl2(PR3)] [M = Rh, R = Ph (1), Me (3); M = Ir, R = Ph (2), Me (4)] takes place in the presence of potassium butadienesulfinate (SO2CHCHCHCH2)K (9) to afford the mononuclear compounds [CpM(Cl)(PR3)(η1-SO2CHCHCHCH2)] [M = Rh, R = Ph (11S), (11W); M = Rh, R = Me (13S), (13W)] and [M = Ir, R = Ph (12S); M = Ir, R = Me (14S), (14W)] under different reaction conditions. The addition of PR3 (R = Ph, Me) to CpIr(Cl)[(1,2,5-η)-SO2CHCHCHCH2] (7) affords the corresponding iridium isomers 12S, 12W and 14S, in a non-selective reaction, along with the corresponding dichloride compounds 2 or 4. The 1H and 13C{1H} NMR data are consistent with the butadienesulfonyl ligands coordinated exclusively through the sulfur atom, and they show the presence of two isomers, described as the S and W conformers, which can be isolated separately. There is clear evidence that these isomers correspond to the kinetic and thermodynamic derivatives, respectively.  相似文献   

12.
The reaction of [Ti(cp)2(BTMSA)] (1) (cp = η5-C5Me5, BTMSA = bis(trimethylsilyl)acetylene) with malonic acids ((HOOC)2CR2, R = H, Me) and N,N-dimethylglycine resulted in the formation of titanium(IV) dicarboxylato complexes [Ti(cp)2{(OOC)2CR2}] (R = H, 2; R = Me, 3) and an α-amino acid titanium(III) complex [Ti(cp)2(OOCCH2NMe2)] (4). The identities of complexes 2-4 were confirmed by microanalysis, 1H and 13C NMR spectroscopy (2, 3), ESI-MS and CID experiments (2, 3) as well as by ESR and magnetic measurements (μeff = 1.81, 298 K) for 4. Single X-ray diffraction analyses of 2 and 4 exhibited monomolecular complexes in which the titanium atom is distorted tetrahedrally coordinated by two η5-C5Me5 rings and by the chelating bound malonato-κ2O,O′ (2) and N,N-dimethylglycinato-κ2O,O′ ligand (4).  相似文献   

13.
Reaction of the N-tosyl-ethylenediamine and salicylaldehyde forms a new sulfonamide Schiff base N-[2-(2-hydroxybenzylideneamino)ethyl]-4-methyl-benzene-sulfonamide (H2L). Three novel complexes constructed from H2L, namely, [M(HL)2] · xH2O (M = Cu, x = 0 for 1, M = Ni, x = 0 for 2 and M = Zn, x = 1 for 3) have been prepared and characterized via X-ray single-crystal diffraction, elemental analysis, X-ray powder diffraction (XRPD), FT-IR, UV-Vis, TGA and photoluminescence measurements. Complex hydrogen bonds, C-H···π and π-π stacking interactions lead 1-3 to present 1-D, 2-D and 3-D supramolecular architectures, respectively.  相似文献   

14.
Ligands containing the 2-organochalcogenomethylpyridine motif with substituents in the 4- or 6-position of the pyridyl ring, R4,R6-pyCH2ER1 [R4 = R6 = H, ER1 = SMe (1), SeMe (2), SPh (6), SePh (7); R4 = Me, R6 = H, ER1 = SMe (3), SPh (8), SePh (9); R4 = H, R6 = Me, ER1 = SMe (4), SPh (10), SePh (11); R4 = H, R6 = Ph, ER1 = SMe (5), SPh (12), SePh (13)] are obtained on the reaction of R4,R6-pyMe with LiBun followed by R1EER1. On reaction with PdCl2(NCMe)2, the ligands with a 6-phenyl substituent form cyclopalladated species PdCl{6-(o-C6H4)pyCH2ER1-C,N,E} (5a, 12a, 13a) with the structure of 13a (ER1 = SePh) confirmed by X-ray crystallography; other ligands form complexes of stoichiometry PdCl2(R4,R6-pyCH2ER1). Complexes with R6 = H are monomeric with N,E-bidentate configurations, confirmed by structural analysis for 3a (R4 = Me, ER1 = SMe), 7a (R4 = H, ER1 = SePh) and 9a (R4 = Me, ER1 = SePh). Two of the 6-methyl substituted complexes examined by X-ray crystallography are oligomeric with trans-PdCl2(N,E) motifs and bridging ligands, trimeric [PdCl2(μ-6-MepyCH2SPh-N,S)]3 (10a) and dimeric [PdCl2(μ-6-MepyCH2SePh-N,Se)]2 (11a). This behaviour is attributed to avoidance of the Me···Cl interaction that would occur in the cis-bidentate configuration if the pyridyl plane had the same orientation with respect to the coordination plane as observed for 3a, 7a and 9a [dihedral angles 8.0(2)-16.8(2)°]. When examined as precatalysts for the Mizoroki-Heck reaction of n-butyl acrylate with aryl halides in N,N-dimethylacetamide at 120 °C, the complexes exhibit the anticipated trends in yield (ArI > ArBr > ArCl, higher yield for electron withdrawing substituents in 4-RC6H4Br and 4-RC6H4Cl). The most active precatalysts are PdCl2(R4-pyCH2SMe-N,S) (R = H (1a), Me (3a)); complexes of the selenium containing ligands exhibit very low activity. For closely related ligands, the changes SMe to SPh, 6-H to 6-Me, and 6-H to 6-Ph lead to lower activity, consistent with involvement of both the pyridyl and chalcogen donors in reactions involving aryl bromides. The precatalyst PdCl2(pyCH2SMe-N,S) (1a) exhibits higher activity for the reaction of aryl chlorides in Bun4NCl at 120 °C as a solvent under non-aqueous ionic liquid (NAIL) conditions.  相似文献   

15.
Five new supramolecular lanthanide coordination polymers with three different structures, {[La2(IA)3(phen)2] · 2H2O}n (1), {[Ln(IA)1.5(phen)] · xH2O}n [x = 1, Ln = Eu (2); x = 0.25, Ln = Dy (3)], and [Ln(IA)1.5(phen)]n [Ln = Er (4); Yb (5)], were prepared by hydro- and solvothermal reactions of lanthanide chlorides with itaconic acid (H2IA) and 1,10-phenanthroline (phen), and structurally characterized by single crystal X-ray diffraction. 1 Comprises 1-D double-chains that are further assembled to a 3-D supramolecular structure via hydrogen bonds and π-π stacks between phen molecules. 2 and 3 have 2-D infinite networks which are further constructed to form 3-D supramolecular architectures with 1-D channels by π-π aromatic interactions. 4 and 5 have 2-D layer structures consisting of three types of rings which are further architectured to form 3-D supramolecular structures by C-H?O hydrogen bonds. The H2IA ligands are all completely deprotonated and exhibit tetra-, penta-, and hexadentate coordination modes in the titled complexes. The high-resolution emission spectrum of 2 shows only one Eu3+ ion site in 2, which is in agreement with the result of X-ray diffraction. And the magnetic property and the thermal stability of 2 were also investigated.  相似文献   

16.
A series of new 3d-4f heterobimetallic Schiff base complexes of the general formula [Zn(μ-L2)Ln(NO3)3(H2O)n] (Ln = La 1, Nd 2, Gd 3, Er 4 and Yb 5; n = 1 or 2; H2L2 = N,N′-bis(3-methoxy-5-p-tolylsalicylidene)ethylene-1,2-diamine) are synthesized and characterized. Complexes 1, 2, 4 and 5 are structurally characterized by X-ray crystallography. The photophysical properties of these complexes are also investigated. At room temperature, complexes 1-5 exhibit similar solution absorption and emission spectra in the UV-Vis region. Furthermore, compounds 2, 4 and 5 exhibit solution emission corresponding to the lanthanide(III) ion in the near-infrared region at room temperature. The triplet state emission of the 3d-4f bimetallic complexes without energy transfer is also determined through the photophysical study of complex 3.  相似文献   

17.
The synthesis and characterization of several complexes of the composition [{M(terpy)}n(L)](ClO4)m (M = Pt, Pd; L = 1-methylimidazole, 1-methyltetrazole, 1-methyltetrazolate; terpy = 2,2′:6′,2″-terpyridine; n = 1, 2; m = 1, 2, 3) is reported and their applicability in terms of a metal-mediated base pair investigated. Reaction of [M(terpy)(H2O)]2+ with 1-methylimidazole leads to [M(terpy)(1-methylimidazole)](ClO4)2 (1: M = Pt; 2: M = Pd). The analogous reaction of [Pt(terpy)(H2O)]2+ with 1-methyltetrazole leads to the organometallic compound [Pt(terpy)(1-methyltetrazolate)]ClO4 (3) in which the aromatic tetrazole proton has been substituted by the platinum moiety. For both platinum(II) and palladium(II), doubly metalated complexes [{M(terpy)}2(1-methyltetrazolate)](ClO4)3 (4: M = Pt; 5: M = Pd) can also be obtained depending on the reaction conditions. In the latter two compounds, the [M(terpy)]2+ moieties are coordinated via C5 and N4. X-ray crystal structures of 1, 2, and 3 are reported. In addition, DFT calculations have been carried out to determine the energy difference between fully planar [Pd(mterpy)(L)]2+ complexes Ip-IVp (mterpy = 4′-methyl-2,2′:6′,2″-terpyridine; L = 1-methylimidazole-N3 (I), 1-methyl-1,2,4-triazole-N4 (II), 1-methyltetrazole-N3 (III), or 3-methylpyridine-N1 (IV)) and the respective geometry-optimized structures Io-IVo. Whereas this energy difference is larger than 70 kJ mol−1 for compounds I, II, and IV, it amounts to only 0.8 kJ mol−1 for the tetrazole-containing complex III, which is stabilized by two intramolecular C-H?N hydrogen bonds. Of all complexes under investigation, only the terpyridine-metal ion-tetrazole system with N3-coordinated tetrazole appears to be suited for an application in terms of a metal-mediated base pair in a metal-modified oligonucleotide.  相似文献   

18.
When the iron sulfide complexes (μ-Sx)[CpFe(CO)2]2 (x = 2, 3) are treated with O-alkyl oxalyl chlorides ROCOCOCl the complexes CpFe(CO)2SCOCO2R (1) [R = Me (a), Et (b)] are obtained. Similarly, the complexes CpFe(CO)2SeCOCO2R (2) are obtained from the analogous iron selenide (μ-Se)[CpFe(CO)2]2 reaction with the same reagents. Treatment of the iron selenide with half equivalent of oxalyl chloride produces the dimeric complex [CpFe(CO)2SeCO]2 (3). The new complexes, 1, 2 and 3, have been characterized by elemental analyses, IR and 1H NMR spectroscopy. The solid state structures of 1a, 2a, 3 and [CpFe(CO)2SCO]2 (4) were determined by an X-ray crystal structure analysis.  相似文献   

19.
Six complexes (1-6) with the type of [Ru(bpy)2L]X2 (1-3: L = L1-L3, X = Cl; 4-6: L = L1-L3, X = PF6) were synthesized based on 2,2′-bipyridine and three 2,2′-bipyridine derivatives L1, L2 and L3 (L1 = 5,5′-dibromo-2,2′-bipyridine, L2 = 5-bromo-5′-carbazolyl-2,2′-bipyridine, L3 = 5,5′-dicarbazolyl-2,2′-bipyridine). The complexes 1-6 were characterized by 1H NMR, MS(ESI) and IR spectra, along with the X-ray crystal structure analysis for 1, 5 and 6. Their photophysical properties and electrochemiluminescence (ECL) properties were investigated in detail. In the UV-Vis absorption spectra, all complexes 1-6 show strong intraligand (π → π) transitions and metal-ligand charge transfer (MLCT, dπ (Ru) → π) bands. Upon the excitation wavelengths at ∼508 nm, all complexes 1-6 exhibit typical MLCT emission of ruthenium(II) polypyridyl complexes. The introduction of carbazole moieties improves the MLCT absorption and emission intensity. The ruthenium(II) complexes 1-6 exhibit good electrochemiluminescence (ECL) properties in [Ru(bpy)2L]2+/tri-n-propylamine (TPrA) acetonitrile solution and the complexes with PF6 showed higher ECL emission intensity than that of the complexes with Cl based on the same ligands.  相似文献   

20.
Two unprecedented families of bpca-based mono-dimensional complexes Cu(bpca)(X) (X = CN, 1; N3, 2) and [Cu1 − xFex(bpca)](ClO4) (x = 0, 3; 0.23, 4) were synthesised. The structure of 1 was solved ab initio from X-ray powder diffraction data and refined by Rietveld methods. The complexes 3-4 were characterised by X-ray single crystal diffraction. In 1 the cyano ligand coordinates the metal centres, the Cu centres forming a zigzag 1-D chain along the (0 0 1) direction, while in 3-4, the bpca ligand itself acts as the link towards the metal ions which are arranged in a linear 1-D chain running parallel to the (0 0 1) direction. An infrared spectroscopy study confirmed these coordination modes. The magnetic properties of both chain families were studied. 1-2 do not show significant magnetic interactions, whereas the magnetic behaviour for 3-4 suggests dominant antiferromagnetic interactions between the metal ions within the chains. The magnetic behaviour of 3 was analysed using the Padé approximation of the Bonner-Fisher model for S = 1/2 antiferromagnetic chains. The J value was estimated as 10 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号